
NOTES ON FINITE GROUP REPRESENTATIONS

CHARLES REZK

In Fall 2020, I taught an undergraduate course on abstract algebra. I chose to spend two
weeks on the theory of complex representations of finite groups. I covered the basic concepts,
leading to the classification of representations by characters. I also briefly addressed a
few more advanced topics, notably induced representations and Frobenius divisibility. I’m
making the lectures and these associated notes for this material publicly available.

The material here is standard, and is mainly based on Steinberg, Representation theory
of finite groups, Ch 2-4, whose notation I will mostly follow. I also used Serre, Linear
representations of finite groups, Ch 1-3.1

1. Group representations

Given a vector space V over a field F , we write GL(V ) for the group of bijective linear
maps T : V → V .

When V = Fn we can write GLn(F ) = GL(Fn), and identify the group with the group
of invertible n× n matrices.

A representation of a group G is a homomorphism of groups φ : G→ GL(V ) for some representation

choice of vector space V . I’ll usually write φg ∈ GL(V ) for the value of φ on g ∈ G.
When V = Fn, so we have a homomorphism φ : G → GLn(F ), we call it a matrix

representation. matrix representation

The choice of field F matters. For now, we will look exclusively at the case of F = C, i.e.,
representations in complex vector spaces.

Remark. Since R ⊆ C is a subfield, GLn(R) is a subgroup of GLn(C). So any real matrix
representation of G is also a complex matrix representation of G.

The dimension (or degree) of a representation φ : G→ GL(V ) is the dimension of the dimension

degreevector space V . We are going to look only at finite dimensional representations. (Note: our
textbooks prefer the term “degree”, but I will usually call it “dimension”.)

2. Examples of group representations

Example (Trivial representation). φ : G→ GL1(C) = C× given by φg = 1 for all g ∈ G.

Warning. the set V = {0} is a vector space (its 0 dimensional). I’m going to follow convention
and sometimes write “0” for this vector space. Then GL({0}) is the trivial group. Thus
there is always a representation G→ GL({0}), which is even more trivial that the trivial
representation. If I need to mention this I’ll call it the “0-representation”.

We write Zn for the cyclic group of order n, whose elements are congruence classes
[k] := {x ∈ Z | x ≡ k (mod n) }, and whose group law is addition.

Example. φ : Z4 → GL1(C) = C× by φ[k] = ik.

Date: May 13, 2022.
1More precisely, I’m following Steinberg, except that I’m avoiding all references to “unitary representations”.

Where this notion appears in proofs, I’m instead using arguments based on Serre’s elegant proofs. (There’s
nothing wrong with knowing about unitary representations, but it’s overkill given that I don’t get very far
into the material.)
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Example. φ : Z4 → GL2(C) by φ[k] =

[
0 −1
1 0

]k
.

Example. For any n ≥ 1, the map φ : Zn → C× by φ[k] := e2πk/n.

Example (Standard representation of Sn). ρ : Sn → GLn(C) defined so that ρg is the
permutation matrix of g:

ρg = [eg(1) · · · eg(n)],

whose k-th column is the standard basis vector eg(k). For instance, ρ : S3 → GL3(C) with

ρ(1 2) =

0 1 0
1 0 0
0 0 1

 , ρ(1 2 3) =

0 0 1
1 0 0
0 1 0

 ,
etc.

Given any homomorphism ψ : H → G of groups, and a representation φ : G→ GL(V ) of
G, we get a representation φ ◦ ψ of H:

H
ψ−→ G

φ−→ GL(V ).

When ψ : H � G is the inclusion of a subgroup, we write φ|H := φ ◦ ψ and call it the
restriction of φ to H. restriction

Example. Let ρ : S3 → GL3(C) be the standard representation of S3, and let π : S4 → S3

be a surjective homomorphism (whose existence we have shown earlier: S3 is isomorphic
to the quotient S4/V where V ≤ S4 is the subgroup generated by elements of the form
(a b)(c d) ∈ S4). This gives a 3-dimensional representation φ ◦ π of S4.

Example. Let V = the set of all continuous functions f : R → R. This is an infinite
dimensional vector space. Define φ : Z2 → GL(V ) by

φ[k](f) := g, g(x) := g((−1)kx).

This is an example of an infinite dimensional representation of Z2.

Remark. A representation of G consists of a choice two pieces of data (V, φ): a vector space V
and a homomorphism φ : G→ GL(V ). As a shorthand, I’ll usually refer to the represetation
by “φ”, but some people prefer to refer to it by “V ”.

3. Equivalences of representations

Fix the group G, and let φ : G → GL(V ) and ψ : G → GL(V ) be representations. An
equivalence is a linear isomorphism T : V →W of vector spaces such that equivalence of representa-

tions

ψg = T ◦ φg ◦ T−1 for all g ∈ G.

We write φ ∼ ψ and say the representations are equivalent if there exists an equivalence. equivalent

(Exercise: “equivalence” is an equivalence relation on the collection of representations of G:
if T is an equivalence φ ∼ ψ, and S is an equivalence φ ∼ ρ, then S ◦ T is an equivalence
φ ∼ ρ.)

Example. Define φ, ψ : Zn → GL2(C) by

φ[k] :=

[
cos 2πk/n − sin 2πk/n
sin 2πk/n cos 2πk/n

]
, ψ[k] :=

[
e2πk/n 0

0 e−2πk/n

]
.

Then left multiplication by A :=

[
1 i
−1 i

]
gives an equivalence: verify that ψg = AφgA

−1.
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Let φ : G→ GL(V ) be a representation of dimension n. Choose a basis B = {v1, . . . , vn}
of V . We get a vector space isomorphism T : V → Cn by sending v ∈ V to its set of
coordinates wrt B:

T (x1v1 + · · ·+ xnvn) = (x1, . . . , xn), x1, . . . , xn ∈ F.
Let ψg := TφgT

−1. That is, ψg = [φg]B, the matrix representing φg in the basis B. Then
ψ : G→ GLn(C) is a homomorphism, and T gives an equivalence of representations φ ∼ ψ.

Thus, every representation is equivalent to a matrix representation.
Our basic goal is to classify representations of G up to equivalence.

4. invariant subspaces

Given a representation φ : G → GL(V ), a vector subspace W ≤ V is G-invariant (or G-invariant subspace

just invariant) if φg(W ) = W for all g ∈ G, where φg(W ) ⊆ V is the image of W under invariant subspace

the function φg.
Given a such a G-invariant subspace, we can restrict φ to a representation

φ|W : G→ GL(W ),

by (φ|W )g(w) := φ(w). We call φ|W a subrepresentation of φ. subrepresentation

Example. Consider the standard representation ρ : Sn → GLn(C). Let W = Cv where v =
e1 + · · ·+en. Then W is an invariant subspace, since ρg(v) = eg(1) + · · ·+eg(n) = e1 + · · ·+en.

The restricted representation ρ|W is equivalent to the trivial representation.

Example. Consider the standard representation ρ : S3 → GL3(C). Let U = Cx+ Cy, where
x = e1 − e2 and y = e2 − e3. Then U is an invariant subspace. To see this, it suffices to
check that ρg(U) ⊆ U for g ∈ {(1 2), (1 2 3)}. We compute

ρ(1 2)(x) = −x, ρ(1 2)(y) = x+ y, ρ(1 2 3)(x) = y, ρ(1 2 3)(y) = −x− y.
The restricted representation ρ|U is equivalent to a matrix representation φ : G→ GL2(C)

with

φ(1 2) =

[
−1 1
0 1

]
, φ(1 2 3) =

[
0 −1
1 −1

]
.

Note: it turns out these are the only invariant subspaces of ρ : S3 → GL3(C), other than
0 = {0} and C3.

5. Irreducible representations

We say that a representation φ : G → GL(V ) is irreducible if (i) V 6= 0, and (ii) the irreducible representation

only G-invariant subspaces are 0 and V .

Example. Any 1-dimensional representation is irreducible.

Example. The standard representation ρ : S3 → GL3(C) is not irreducible. But the two
subrepresentations ρ|W and ρ|U that we found turn out to be irreducible.

Example. Here’s a proof that the representation φ : G→ GL2(C) defined earlier is irreducible.

Remember that φ(1 2) =

[
−1 1
0 1

]
, φ(1 2 3) =

[
0 −1
1 −1

]
. If this is not irreducible, then there

is a 1-dimensional subspace W ≤ C2 which is invariant. Write W = Cv for some v ∈ C2.
Then v 6= 0, and φg(v) ∈ Cv for all g ∈ G, i.e., v must be an eigenvector for every g ∈ G.
But we can check explicitly that

v1 =

[
1
0

]
, v2 =

[
1
2

]
are (up to scalar) the only eigenvectors of φ(1 2), and that neither is an eigenvector of φ(1 2 3).
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6. Direct sum of representations

Given vector spaces V1, . . . , Vn, their external direct sum (or simply direct sum) is a external direct sum

direct sumvector space V = V1 ⊕ · · · ⊕ Vn, whose underlying set is the direct product V1 × · · · × Vn.
(You won’t confuse anyone if you call it the direct product, but it is usually called “direct
sum”.)

Given representations φ(k) : G → GL(Vk), k = 1, . . . , n, their external direct sum is external direct sum

the representation φ : G→ GL(V ), where

V := V1 ⊕ · · · ⊕ Vn, φ : G→ GL(V ), φg(x1, . . . , xn) := (φ(1)
g (x1), . . . , φ(n)

g (xn)).

Conventionally, we write φ = φ(1) ⊕ · · · ⊕ φ(n) for this homomorphism.

Example (Direct sums of matrix representations). If V1 = Cn1 and V2 = Cn2 , then we can

identify V1 ⊕ V2 with Cn1+n2 . Thus, given φ(j) : G→ GLnj (C) for j = 1, 2, the direct sum
representation has block matrix form

(φ(1) ⊕ φ(2))g =

[
φ

(1)
g 0

0 φ
(2)
g

]
.

Say that V is an internal direct sum of subspaces V1, . . . , Vn ≤ V if the map internal direct sum

V1 ⊕ · · · ⊕ Vn → V, (x1, . . . , xn) 7→ x1 + · · ·+ xn

is an isomorphism.
Note: if n = 2, then V is an internal direct sum of V1, V2 ≤ V iff V1 + V2 = V and

V1 ∩ V2 = 0. When n > 2 there is also a criterion like this, but it’s more complicated to
state.

If φ : G → GL(V ) is a representation, and V1, . . . , Vn ≤ V are G-invariant subspaces,
and if V is an internal direct sum of these subspaces, then we say we say that φ is an
internal direct sum of the subrepresentations φ|Vk . In this case, there is an equivalence of internal direct sum

representations (φ|V1)⊕ · · · ⊕ (φ|Vn) ∼ φ between φ and the external direct sum built from
the subrepresentations.

We say that φ : G→ GL(V ) is decomposable if it is an internal direct sum of two non-0 decomposable

invariant subspaces V1 and V2. (I.e., both V1 and V2 have positive dimension.)
We say that φ : G→ GL(V ) is completely reducible if it is equivalent to direct sum of completely reducible

a finite sequence of irreducible subrepresentations.

Proposition. If φ : G→ GL(V ) and ψ : G→ GL(W ) are equivalent representations, then
φ is irreducible/decomposable/completely reducible iff ψ is.

Proof. Here is the proof for irreducibility. Let T : V →W be an equivalence. I just need to
show that ψ irreducible implies φ irreducible. If φ is not irreducible, then there exists an
invariant subspace V ′ ≤ V such that V ′ 6= 0 and V ′ 6= V . Let W ′ = T (V ′). Then W ′ is an
invariant subspace of W such that W ′ 6= 0 and W ′ 6= W . �

7. Morphisms of representations

Let φ : G→ GL(V ) and ψ : G→ GL(W ) be two representations of G. A morphism of morphism of representa-
tionsof representations from φ to ψ is a linear map T : V →W such that

ψg ◦ T = T ◦ φg for all g ∈ G.

Such a T is also sometimes called an intertwining operator. intertwining operator

Note that if T is a bijection, then the above identity can be rewritten as

ψg = T ◦ φg ◦ T−1 for all g ∈ G,
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so a morphism which is a bijection is exactly what we called an equivalence.
Given vector spaces V,W , I’ll write Hom(V,W ) for the set of linear maps V →W . Note

that Hom(V,W ) is also a vector space: you can add linear maps, and multiply a linear map
by a scalar.

Given representations φ : G→ GL(V ) and ψ : G→ GL(W ), write

HomG(φ, ψ) := {T ∈ Hom(V,W ) | ψgT = Tφg ∀ g ∈ G }
for the set of morphisms of representations. Note that this is a vector subspace of Hom(V,W ):
if T1, T2 ∈ HomG(φ, ψ) and c1, c2 ∈ C, then

ψg(c1T1 + c2T2) = c1ψgT1 + c2ψgT2 = c1T1φg + c2T2φg = (c1T1 + c2T2)φg.

Note that if V and W are finite dimensional vector spaces, then so is Hom(V,W ), and
thus so is HomG(φ, ψ).

Proposition. Let T : V → W be a morphism of representations φ : G → GL(V ) and
ψ : G→ GL(W ). Then the subspaces ker(T ) ≤ V and T (V ) ≤W are invariant subspaces.

Proof. This is straightforward: If v ∈ Ker(T ), then T (φg(v)) = ψg(T (v)) = φg(0) = 0, so
φg(v) ∈ Ker(T ). If w = T (v) ∈ T (V ), then ψg(W ) = ψg(T (v)) = T (ψg(v)) ∈ T (V ). �

Exercise. It turns out that if φ : G→ GL(V ) and ψ : G→ GL(W ) are representations, then
Hom(V,W ) is also a representation! Define

γ : G→ GL(Hom(V,W ))

by
γg(T ) := ψgTφg−1 .

Show that this defines a representation. Then show that γg(T ) = T for all g ∈ T iff
T ∈ HomG(φ, ψ).

8. The averaging trick for morphisms

Given representations φ : G → GL(V ) and ψ : G → GL(W ), and a linear map T ∈
Hom(V,W ), there is a way to produce from T a morphism T ′ ∈ HomG(φ, ψ) by “averaging
T over group elements”.

Proposition (Averaging trick). Let φ : G→ GL(V ) and ψ : G→ GL(W ) be representations
of a finite group G. Given a linear map T ∈ Hom(V,W ), define a function T ′ : V →W by

T ′ :=
1

|G|
∑
g∈G

ψgTφ
−1
g .

Then T ′ ∈ HomG(φ, ψ).

Proof. First, note that T ′ : V →W is certainly a linear map, since ψg, T , and φ−1
g are linear.

To show that it is a morphism of representations, we show ψaT
′φ−1
a = T ′ for all a ∈ G.

ψaT
′φa−1 =

1

|G|
∑
g∈G

ψaψgTφ
−1
g φ−1

a

=
1

|G|
∑
g∈G

ψagTφ
−1
ag

=
1

|G|
∑
h∈G

ψhTφ
−1
h = T ′ where h = ag.

�
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Exercise. Show that if T ∈ HomG(φ, ψ), then T ′ = T .

Remark. This is the first fact which relies on the fact that G is finite, and on the fact that
the field is C (or at least, has characteristic 0). Clearly, we need G finite so that we can
divide by |G| in the averaging formula.

We also need the field F to have “characteristic 0”, i.e., we need 1 + · · ·+ 1 6= 0 in F , so
that we can divide by |G|. We cannot use the averaging trick for representations over the
finite field F = Zp when p divides |G|.

Representation theory over fields of positive characteristic is called modular representation
theory.

Example. Let φ, ψ : Z4 → GL2(C) be given by

φ[k] = Ak =

[
0 −1
1 0

]k
, ψ[k] = B−k =

[
i 0
0 −i

]k
.

We can get a morphism from φ to ψ by starting with the identity matrix and averaging:

P :=
1

4

(
I +BA−1 +B2A−2 +B3A−3

)
=

1

4

([
1 0
0 1

]
+

[
0 i
i 0

]
+

[
1 0
0 1

]
+

[
0 i
i 0

])
=

1

2

[
1 i
i 1

]
,

which gives a morphism (in fact, an equivalence) from φ to ψ.

9. Decomposability of representations of finite groups

Proposition. Every non-0 (finite dimensional, complex) representation of a finite group is
either irreducible or decomposable.

Proof. Consider a representation φ : G→ GL(V ) which is not irreducible. Thus there exists
a G-invariant subspace W ≤ V with W 6= 0 and W 6= V .

Therefore there is a linear map T : V → V such that T |W = idW and T (V ) ⊆ W (a
“projection operator” onto the subspace W ). To construct T explicitly, choose a basis
v1, . . . , vn of V so that v1, . . . , vk is a basis of W (so 0 < k < n). Let W ′ = C{vk+1, . . . , vn},
the span of the remaining basis vectors. Then V is an internal direct sum of W and W ′ as a
vector space (but perhaps not as a representation). We define T so that T (vi) = vi if i ≤ k,
and T (vi) = 0 if i > k. Note that TT = T .

Now average T to get T ′ : V → V , where

T ′ :=
1

|G|
∑
g∈G

φgTφg−1 .

Note that T ′ ∈ HomG(φ, φ), since this is the averaging trick.
We have that T ′(V ) ⊆W , since T (φg−1(v)) ∈W for all v ∈ V , and thus φgTφg−1(v) ∈W

since W is an invariant subspace.
We have that T ′|W = idW , since for w ∈W , φg−1(w) ∈W , so Tφg−1(w) = φg−1(w), so

T ′(w) =
1

|G|
∑
g∈G

φgTφg−1(w) =
1

|G|
∑
g∈G

φgφg−1(w) = w.

Since T ′(W ) ⊆W this implies T ′T ′ = T ′.
Now consider

W ′ := ker(T ′) = {x ∈ V | T ′(x) = 0 }.
Since T ′ ∈ HomG(φ, φ), this is an invariant subspace of V .
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I claim that V is a direct sum of W and W ′. Note that for all x ∈ V , we have

x = T ′(x) + (x− T ′(x)), T ′(x) ∈W, x− T ′(x) ∈W ′.
This is because T ′(I − T ′) = T ′ − T ′T ′ = 0. Also W ∩W ′ = 0, since for x ∈ W ∩W ′ we
have x = T ′(x) = 0.

We have shown that φ is decomposable: it is a direct sum of subrepresentations φ|W and
φ|W ′ . �

10. Complete reducibility of representations of finite groups

Theorem (Maschke). Every finite dimensional representation of a finite group is completely
reducible.

Proof. Induction on dimension. That is, if φ is not 0 or irreducible, then φ ∼ φ(1) ⊕ φ(2) for
non-0 subrepresentations φ(1) and φ(2), which each have strictly smaller dimension than φ,
and so are completely reducible by induction. �

Remark. This theorem really does need G to be finite, and the characteristic of the field F
to be 0.

For instance, consider

φ : Z→ GL2(C), φ(k) :=

[
1 k
0 1

]
.

This is a representation of the infinite group Z. It is not irreducible, but also not decomposable.
(Exercise: prove this.)

Similarly, for a prime p consider

φ : Zp → GL2(Zp), φ([k]) :=

[
[1] [k]
[0] [1]

]
.

This is a representation of Zp in a vector space over Zp. It is not irreducible, but also not
decomposable. (Exercise: prove this.)

Corollary. If φ : G→ GLn(C) is a matrix representation of a finite group, then there exists
T ∈ GLn(C), such that

T−1φT =


φ(1) 0 · · · 0

0 φ(2) · · · 0
...

...
. . .

...

0 0 · · · φ(r)


where each φ(k) : G→ GLnk

(C) is an irreducible matrix representation.

Proof. Since the representation is completely reducible there are subspaces V1, . . . , Vr of V
such that (i) V is a direct sum of V1, . . . , Vr and (ii) each φ|Vk is irreducible. Choose a basis
v1, . . . , vn so that v1, . . . , vn1 are a basis for V1, vn1+1, . . . , vn2 are a basis of V2, etc. Then
let T = [v1 · · · vn] ∈ GLn(V ). �

Example. For the standard representation ρ : S3 → GL3(C), we have

T−1ρ(1 2)T =

 1 0 0
0 −1 1
0 0 1

 , T−1ρ(1 2 3)T =

 1 0 0
0 0 −1
0 1 −1

 , T =

 1 1 0
1 −1 1
1 0 −1

 .
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11. Schur’s lemma

This is the key fact for studying irreducible representations.

Proposition (Schur’s lemma). Let φ : G → GL(V ) and ψ : G → GL(W ) be irreducible
representations, and T ∈ HomG(φ, ψ). Then either T = 0 or T is an isomorphism. As a
consequence:

(1) If φ 6∼ ψ, then T = 0.
(2) If φ ∼ ψ, then HomG(φ, ψ) is a 1-dimensional vector space.

In particular, HomG(φ, φ) = {λI | λ ∈ C }.

Proof. First, suppose T ∈ HomG(φ, ψ) with T 6= 0. Then ker(T ) and T (V ) are invariant
subspaces, and ker(T ) 6= V and T (V ) 6= 0. But since φ is irreducible the only invariant
subspaces are 0 and V , so ker(T ) = 0 and T (V ) = V , so T is an isomorphism.

(1) If φ 6∼ ψ, then T cannot be an isomorphism, so T = 0.
(2) First suppose V = W and φ = ψ, and consider any T ∈ HomG(φ, φ). Since T is a

C-linear map, it has an eigenvalue λ ∈ C, so T − λI is not an isomorphism of vector spaces.
But remember that HomG(φ, φ) is a vector space, so T − λI ∈ HomG(φ, φ). Since all non-0
elements of HomG(φ, φ) are isomorphisms, we must have T − λI = 0, i.e., T = λI for some
λ.

Now if φ ∼ ψ, fix an equivalence S ∈ HomG(ψ, φ). Then for any T ∈ HomG(φ, ψ), we
have TS ∈ HomG(ψ,ψ) = {λI | λ ∈ C }, so T = λS−1 for some λ ∈ C, i.e., HomG(φ, ψ) =
{λS−1 | λ ∈ C } which is 1-dimensional. �

12. 1-dimensional representations and abelian groups

Proposition. If G is a finite abelian group, then every irreducible representation has
dimension 1.

Proof. Let φ : G→ GL(V ) be a representation. Given a ∈ G let T = φa : V → V . Then for
g ∈ G,

φgT = φgφa = φga = φag = φaφg = Tφg,

That is, because G is abelian, every φg is an element of HomG(φ, φ). By Schur’s lemma, if
φ is irreducible we must have φg = λgI for some λg ∈ G.

In particular, for any v ∈ V , the subspace Cv is G-invariant, since φg(v) = λgv. Thus φ
can be irreducible iff dimV = 1. �

In terms of matrix representations complete reducibility of representations of finite abelian
groups has the following form.

Corollary. If G is a finite abelian group and φ : G→ GLn(C) a representation, then there
exists T ∈ GLn(C) such that T−1φgT is diagonal for all g ∈ G.

Corollary. If A ∈ GLn(C) has finite order, then A is diagonalizable.

Proof. If o(A) = n, then there is a representation φ : Zn → GLn(C) with φ([1]) = A. �

Given a group G, let [G,G] := 〈ghg−1h−1, g, h ∈ G〉 ≤ G, called the commutator
subgroup, i.e., the subgroup of G generated by all commutators of all elements. commutator subgroup

Exercise. [G,G] is a normal subgroup of G, and the quotient group G/[G,G] is abelian.

Exercise. Every homomorphism G→ H to an abelian group H contains [G,G] in its kernel,
and so factors through a homomorphism G/[G,G]→ H.

Example. The commutator subgroup of Q8 (quaternion group of order 8) is {±1}. The
quotient Q8/[Q8, Q8] is a Klein 4-group, i.e., isomorphic to Z2 × Z2.
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Proposition. The 1-dimensional representations of a finite group G are all of the form
φ ◦ π:

G
π−→ G/[G,G]

φ−→ C×

where φ is a 1-dimensional representation of G/[G,G].

Given an arbitrary representation φ : G → GL(V ) of some dimension d, and a 1-
dimensional representation θ : G→ C×, we can define a new representation of dimension d,
by

θφ :=
(
g 7→ θ(g)φ(g)

)
.

Exercise. If φ : G→ GL(V ) is irreducible and θ : G→ C× a homomorphism, then θφ is also
irreducible.

13. Trace of a linear operator

Given a square matrix A = (aij) ∈ Matn×n(C) its trace is trace

TrA :=

n∑
i=1

aii =

n∑
i,j=1

aijδij .

We have that Tr(AB) = Tr(BA) for any A,B ∈ Matn×n(C), since

Tr(AB) =
n∑
i=1

(AB)ii =
n∑
i=1

n∑
j=1

aijbji, Tr(BA) =
n∑
i=1

(BA)ii =
n∑
i=1

n∑
j=1

bijaji,

which are the same. Therefore Tr(PAP−1) = TrA if P is invertible, since Tr((PA)P−1) =
Tr(P−1(PA)).

Let T : V → V be a linear map, where dimV < ∞. Then we define the trace of T as trace of a linear operator

follows: Choose a basis B = {v1, . . . , vn} of V , let A = [T ]B ∈ Matn×n(C) be the matrix of
T in this basis. Then define TrT := TrA.

This does not depend on the choice of basis: with respect to another basis B, we have
[T ]B′ = P [T ]BP

−1 for some invertible matrix P .
Actually, we can do a little better.

Proposition. Let T ∈ Hom(V, V ), S ∈ Hom(W,W ), and suppose U : V → W is an
isomorphism such that UTU−1 = S. Then Tr(T ) = Tr(S).

Proof. Pick a basis B = {v1, . . . , vn} of V . Then B′ = {w1, . . . , wn} with wk = Svk is a
basis of W . We have [S]B′ = [T ]B, and the claim follows. �

Trace behaves well with respect to direct sums.

Proposition. Let Tk : Vk → Vk be linear operators for k = 1, . . . , r, where dimVk <∞. Let
V := V1 ⊕ · · · ⊕ Vr and T := T1 ⊕ · · · ⊕ Tr : V → V . Then

Tr(T1 ⊕ · · · ⊕ Tr) = Tr(T1) + · · ·+ Tr(Tr).

Proof. Choose a basis B of V so that A = [T ] is a block matrix

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar,


where Ar = [Tr]. �
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Note that trace defines a linear map Tr: Hom(V, V )→ C, i.e., Tr(S+T ) = Tr(S) + Tr(T )
and Tr(λT ) = λTr(T ).

Exercise. Here is a characterization of trace that doesn’t use a choice of basis. For a
finite dimensional V , show that Tr: Hom(V, V ) → C is the unique linear map such that
(i) Tr vanishes on commutators, i.e., Tr(AB −BA) = 0 for all A,B ∈ Hom(V, V ), and (ii)
Tr I = dimV . [Hint: Reduce to the case of matrices. Let Eij be the matrix with 1 in entry
(i, j), and 0 everywhere else. Then if i 6= j show that Eij and Eii − Ejj are commutators.]

Exercise. Compute the trace of Rotu(θ) ∈ SO(3), the matrix which describes rotation by
angle θ through an axis passing through a unit vector u in R3. For which values of θ is this
trace an integer? Compute the trace of Rotu(θ) Reflu ∈ O(3), where Reflu is the matrix
which describes reflection across the plane perpendicular to u. For which values of θ is this
trace an integer?

14. Character of a representation

Given a (finite dimensional) representation φ : G → GL(V ), the character of φ is a character

function χφ : G→ C (not usually a homomorphism) defined by

χφ(g) := Tr(φg).

In practice, you compute the character by choosing a basis of V , so converting φ into a
matrix representation. If φ is a matrix representation, then

χφ(g) =
n∑
i=1

φii(g),

where φg = (φij(g)) ∈ GLn(C), with matrix entries φij(g) ∈ C.
The importance of characters is from the following.

Proposition. If φ ∼ ψ, then χφ = χψ. That is, the character is an equivalence invariant
of representations.

Proof. If T ∈ Hom(φ, ψ), then ψg = TφgT
−1, and thus Tr(ψg) = Tr(φg). �

As we will show later, more is true: characters are a complete equivalence invariant. That
is, φ ∼ ψ iff χφ = χψ. Thus, classifying representations up to equivalence amounts to
understanding the possible characters.

Example. If φ : G→ GL1(C) is a 1-dimensional representation, then χφ = φ. For this reason,
it is typical to quietly identify 1-dimensional representations with their characters.

Proposition. We have χφ(e) = dimV and χφ(g−1) = χφ(g). Furthermore, χφ(g) is a a

finite sum of numbers of the form ζk, where ζ = e2πi/d with d = o(g), the order of g.

Proof. We can assume WLOG that φ is a matrix representation G → GLn(C). The first
claim is clear, since Tr(I) = n. For the second claim, note that if A = φg then o(A) divides
d, so it is diagonalizable, and in fact similar to diag(λ1, . . . , λn), where the eigenvalues must
satisfy λdk = 1. This implies that λk = ζjk for some jk ∈ Z, and that λ−1

k = ζ−jk = λk. Thus

TrA = λ1 + · · ·+ λn = ζj1 + · · ·+ ζjn , TrA−1 = λ1 + · · ·+ λn = ζ−j1 + · · ·+ ζ−jn ,

since A−1 will be similar to diag(λ−1
1 , . . . , λ−1

n ). �

Exercise. Show that if o(g) = 2, then χφ(g) ∈ Z. Show that if g is conjugate to g−1 in the
group G, then χφ(g) ∈ R. Show that χφ(g) = χφ(e) iff g ∈ ker(φ). (Hint: diagonalize φg.)



NOTES ON FINITE GROUP REPRESENTATIONS 11

Exercise. Show that |χφ(g)| ≤ |χφ(e)| for any g ∈ G. (Hint: use the triangle inequality
|z1 + · · ·+ zd| ≤ |z1|+ · · ·+ |zd|.)

Proposition. If φ = φ(1) ⊕ · · · ⊕ φ(r) is a direct sum of representations, then

χφ = χφ(1) + · · ·+ χφ(r) .

Proof. Reduce to the case of a matrix representation with block form

φ =


φ(1) 0 · · · 0

0 φ(2) · · · 0
...

...
. . .

...

0 0 · · · φ(r)

 .
�

Proposition. If θ : G→ C× and φ : G→ GL(V ) are representations, then the character of
θφ : G→ GL(V ) is

χθφ(g) = θ(g)χφ(g).

Proof. Immediate from the fact that for λ ∈ C, Tr(λφg) = λTr(φg). �

Exercise. Let φ : G→ GLn(C) be a matrix representation. Define φ : G→ GLn(C) by

φ(g) := φ(g),

where for a matrix A = (aij), we let A = (aij). Show that φ is a representation, and show

that χφ = χφ. Also show that φ is irreducible iff φ is irreducible.

Exercise. Suppose c ∈ Z(G) is an element in the center of G, and let φ be an irreducible
G-representation with character χ = χφ and dimension d = dimφ. Show that |χ(c)| = χ(e),
and that χ(cg) = χ(c)χ(g)/d for all g ∈ G.

15. Class functions

A class function is a function f : G→ C such that class function

f(g) = f(hgh−1) for all g, h ∈ G.

That is, the value of f on g depends only on the conjugacy class of g.

Proposition. Characters of representations are class functions.

Proof.
χφ(hgh−1) = Tr(φhgh−1) = Tr(φhφgφ

−1
h ) = Tr(φg) = χφ(g).

�

If a class function is the character of some representation, we just call it a “character”.
Thus, the set of characters is a subset of the set of class functions.

We write L(G) = {f : G → C} for the set of all functions to complex numbers , and
Lc(G) ⊆ L(G) for the subset of class functions2. Note that L(G) is a complex vector space,
and Lc(G) is a subspace of L(G). We have that dimL(G) = |G|, and dimLc(G) = the
number of conjugacy classes in G.

The vector spaces L(G) and Lc(G) are inner product spaces. Define a function L(G)×
L(G)→ C, written “(f1, f2) 7→ 〈f1, f2〉”, by

〈f1, f2〉 :=
1

|G|
∑
g∈G

f1(g)f2(g).

2Steinberg calls this set “Z(L(G))”.
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This has the properties

• 〈λ1f1 + λ2f2, g〉 = λ1〈f1, g〉+ λ2〈f2, g〉, for λ1, λ2 ∈ C, f1, f2, g ∈ L(G).

• 〈g, f〉 = 〈f, g〉, for f, g ∈ L(G).
• 〈f, f〉 ∈ R>0 if f ∈ L(G) and f 6= 0.

That is, it is an Hermitian inner product for L(G). (Note: 〈f1, f2〉 is C-linear in the Hermitian inner product

first variable, but is C-antilinear in the second variable, i.e., 〈f1, λf2〉 = λ〈f1, f2〉.)
As a consequence, it makes sense to speak of an orthonormal subset of L(G) or of orthonormal subset

Lc(G): a list of elements f1, . . . , fn such that 〈fi, fj〉 = δij . It is an immediate consequence
that any orthonormal subset is linearly independent.

An orthonormal basis is a basis which is an orthonormal subset. Given an orthonormal orthonormal basis

basis f1, . . . , fn, we always have

f =

n∑
k=1

〈f, fk〉 fk.

16. Orthogonality relations for characters

We are going to show the following, called the orthogonality relation for characters.

Theorem. Let φ, ψ be irreducible representations of G. Then

〈χφ, χψ〉 =

{
1 if φ ∼ ψ,

0 if φ 6∼ ψ.

That is, the irreducible characters are an orthonormal subset of Lc(G).

I will prove this soon. First, let’s get lots of consequences.

Corollary. There are at most s equivalence classes of irreducible representations of G, where
s = the number of conjugacy classes in G.

Proof. If λ1, . . . , λr are a list of pairwise inequivalent irreducible representations, then by
the orthogonality relation, the characters χλ1 , . . . , χλr are an orthonormal subset of Lc(G)
(and in particular are pairwise distinct, since the representations are pairwise inequivalent).
Thus r ≤ dimLc(G) = s. �

(Soon, we will show that irreducible characters are a basis of Lc(G), and thus that there
are exactly s distinct irreducible characters.)

Proposition. Let φ be a representation of G, and suppose φ = φ(1) ⊕ · · · ⊕ φ(r), where each
φ(k) is irreducible. Then for any irreducible representation λ,

〈χλ, χφ〉 = number of k ∈ {1, . . . , n} such that φ(k) ∼ λ.
As a consequence, any two decompositions of φ as a direct sum of irreducible representations
have the same number of irreducibles of each type.

Proof. Since χφ =
∑r

k=1 χ
(k)
φ , we have

〈χφ, χλ〉 =
n∑
k=1

〈χφ(k) , χλ〉,

where each term 〈χφ(k) , χλ〉 is either 1 or 0 depending on whether λ ∼ φ(k). This gives the
first statement.

The second statement follows from the fact that the numbers 〈χλ, χφ〉 do not depend on
the choice of direct sum decomposition. �
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For an irreducible representation λ, the number 〈χλ, χφ〉 is called the multiplicity of λ multiplicity

in φ.

Proposition. If φ is a representation, and λ1, . . . , λs is a complete list of pairwise inequiv-
alent irreducible representations of G, then

φ ∼ m1λ
1 ⊕ · · · ⊕msλ

s,

where mk = 〈χφ, χλk〉, and “mλ” is shorthand for “λ⊕ · · · ⊕ λ︸ ︷︷ ︸
m copies

”.

Proof. Since φ is completely reducible, there exists a decomposition

φ ∼ m1λ
1 ⊕ · · ·msλ

s

with mk ≥ 0. Then

〈χφ, χλk〉 = 〈
s∑
i=1

miχλi , χλk〉 =
s∑
i=1

mi〈χλi , χλk〉 = mk.

�

Corollary. If φ and ψ are representations, then χφ = χψ iff φ ∼ ψ. That is, characters are
a complete isomorphism invariant of (finite dimensional) representations of (finite) groups.

Proof. Immeditate from the preceeding proposition. �

Corollary. If φ ∼ m1λ1⊕· · ·⊕msλs, where λ1, . . . , λs are pairwise inequivalent irreducibles,
then

〈χφ, χφ〉 =

s∑
k=1

m2
k.

In particular, φ is irreducible iff 〈χφ, χφ〉 = 1.

Proof. Compute

〈χφ, χφ〉 = 〈
r∑
i=1

miχλi ,

r∑
j=1

mjχλj 〉

=

r∑
i=1

r∑
j=1

mimj〈χλi , χλj 〉

=

r∑
k=1

m2
k,

using the orthogonality relation for characters. This = 1 iff mk = 1 for exactly one value of
k, and all other mi = 0. �

Warning. it is not true that f ∈ Lc(G) is such that 〈f, f〉 = 1, then f is the character of
some irreducible representation. You need to know that f is a character in order to conclude
this.

17. Character tables for Z4 and Z2 × Z2

Write a for a generator of Z4. The following table presents all the irreducible characters
of Z4.
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e a a2 a3

χ1 1 1 1 1
χ2 1 i −1 −i
χ3 1 −1 1 −1
χ4 1 −i −1 −i

All these characters are homomorphisms Z4 → C×, which are all the irreducible representa-
tions since G is abelian.

You can check explicitly that the orthogonality relations 〈χi, χj〉 = δij hold. Using

〈χi, χj〉 =
1

4

[
χi(e)χj(e) + χi(a)χj(a) + χi(a

2)χj(a
2) + χi(a

3)χj(a3)
]
,

we get for instance

〈χ2, χ2〉 =
1

4

[
(1)(1) + (i)(−i) + (−1)(−1) + (−i)(i)

]
= 1

and

〈χ2, χ4〉 =
1

4

[
(1)(1) + (i)(i) + (−1)(−1) + (−i)(−i)

]
= 0.

Here is the character table for Z2 × Z2, in terms of order 2 generators a and b.

e a b ab
χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

18. Character table for S3

Here are some characters.

• There is a trivial representation S3 → C×, which is also a irreducible character,
which we write as χ1, so χ1(g) = 1 for all g.
• The sign homomorphism S3 → C× sends even permutations to 1 and odd permu-

tations to −1. This is a representation, and also a irreducible character, which we
write as χ2.
• We have the standard representation ρ : S3 → GL3(C). It is easy to compute its

character on representatives of conjugacy classes:

χρ(e) = 3, χρ((1 2)) = 1, χρ((1 2 3)) = 0.

We have

〈χρ, χρ〉 =
1

S3

∑
g∈S3

χρ(g)χρ(g)

=
1

6

[
1(3 · 3) + 3(1 · 1) + 2(0 · 0)

]
= 2.

Thus, ρ is not an irreducible representation. The only way to write 2 as a sum
of positive squares is 2 = 12 + 12, so ρ ∼ λ ⊕ λ′ for two inequivalent irreducible
representations λ, λ′.

We can compute

〈χ1, χρ〉 =
1

6

[
1(1 · 3) + 3(1 · 1) + 2(1 · 0)

]
= 1



NOTES ON FINITE GROUP REPRESENTATIONS 15

and

〈χ2, χρ〉 =
1

6

[
1(1 · 3) + 3(−1 · 1) + 2(1 · 0)

]
= 0.

So ρ ∼ χ1 ⊕ ψ for some other irreducible ψ.
• Since χρ = χ1 + χψ, we must have

χψ(e) = 2, χψ((1 2)) = 0, χψ((1 2 3)) = −1.

We obtain the “character table” of S3, with χ3 = χψ:

6 1 3 2

e (1 2) (1 2 3)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

I’ve written the sizes of the conjugacy classes above each representative, since these numbers
are needed to compute the inner product of characters.

Note: we know that since the sign representation is 1-dimensional, if χ is an irreducible
character so is χ2χ. Since χ2χ3 is an irreducible character of dimension 2, and since we have
accounted for all irreducible characters, we must have χ2χ3 = χ3. This gives another proof
that χ3((1 2)) = 0, since χ2((1 2)) = −1.

Finally, note that ψ must be equivalent to the representation on the 2-dimensional invariant
subspace of ρ that we described earlier. That earlier calculation thus gives yet another way
to compute χ3.

19. Proof of the orthogonality relations, part 1

Let φ : G→ GL(V ) be an irreducible representation, and let χ = χφ be its character. I
want to show 〈χ, χ〉 = 1.

WLOG we can assume φ is a matrix representation, so we can write φg = (φij(g)) ∈
GLn(C). Remember that χ(g) = χ(g−1), and compute:

〈χ, χ〉 =
1

|G|
∑
g∈G

χ(g)χ(g−1)

=
1

|G|
∑
g∈G

∑
i,j

φii(g)φjj(g
−1).

The second sum is over the indices i = 1, . . . , n and j = 1, . . . , n. The idea is to switch the
order of summation, and find a formula for (1/ |G|)

∑
g∈G φii(g)φjj(g

−1) for a fixed i and j.
We will use the “averaging trick” combined with Schur’s lemma.

Lemma. Let φ : G → GL(V ) be an irreducible representation of dimension n, and let
T : V → V be a linear map. Define T ′ : V → V by

T ′ :=
1

|G|
∑
g∈G

φgTφ
−1
g .

Then T ′ = λI where λ = (1/n) Tr(T ).

Proof. This is the “averaging” trick, so T ′ ∈ HomG(φ, φ). Since φ irreducible, Schur’s lemma
says T ′ = λI for some λ ∈ C. To compute λ take the trace:

Tr(T ′) =
1

|G|
∑
g∈G

Tr(φgTφ
−1
g ) = Tr(T ),

so Tr(T ) = Tr(T ′) = Tr(λI) = nλ gives the claim. �
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Assume now that φ : G→ GLn(C) is a matrix representation. We represent an arbitrary
T ∈ Hom(Cn,Cn) by an arbitrary matrix X = (xij) ∈ Matn×n(C).

Let X ′ = (x′ij) ∈ Matn×n(C) be the matrix representing T ′, so

X ′ :=
1

|G|
∑
g∈G

φgXφg−1 .

By the lemma X ′ = λI with λ = (1/n) TrX.
I’m going to write the matrix entries of X ′ in two different ways. I’ll use the Kronecker

delta, defined by I = (δij). The averaging formula becomes:

x′ij =
1

|G|
∑
g∈G

∑
u,v

φiu(g)xuvφvj(g
−1),

where 1 ≤ u, v ≤ n. Since X ′ = (1/n) Tr(X)I, we can also write

x′ij =
1

n
δij
∑
k

xkk =
1

n

∑
u,v

δijxuvδuv.

Putting this in one equation gives

0 =
∑
u,v

[
1

n
δijδuv −

1

|G|
∑
g∈G

φiu(g)φvj(g
−1)

]
xuv.

Remember that the matrix X is arbitrary. So if we set xuv = 1 and all other entries of X to
0, we get a Schur orthogonality relation: Schur orthogonality rela-

tion
1

n
δijδuv =

1

|G|
∑
g∈G

φiu(g)φvj(g
−1) for all 1 ≤ i, j, u, v ≤ n.

In particular, taking u = i and v = j gives

1

n
δij =

1

|G|
∑
g∈G

φii(g)φjj(g
−1) for all 1 ≤ i, j ≤ n.

Summing over all i and j gives

〈χ, χ〉 =
∑
i,j

1

|G|
∑
g∈G

φii(g)φjj(g
−1)

=
∑
i,j

1

n
δij = 1.

This is what we wanted.

20. Proof of the orthogonality relations, part 2

Let φ : G → GL(V ) and φ : G → GL(W ) be irreducible representations which are not
equivalent. I want to show 〈χψ, χφ〉 = 0. The proof will be almost the same as before.

WLOG we can assume φ and ψ are matrix representation, so we can write φg = (φij(g)) ∈
GLn(C) and ψg = (ψij(g)) ∈ GLm(C). Remember that χφ(g) = χφ(g−1), and compute:

〈χψ, χφ〉 =
1

|G|
∑
g∈G

χψ(g)χφ(g−1)

=
1

|G|
∑
g∈G

∑
i,j

ψii(g)φjj(g
−1).
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Again, we will switch the order of summation, and find a formula for (1/ |G|)
∑

g∈G ψii(g)φjj(g
−1)

for a fixed i and j.
We will use the “averaging trick” combined with Schur’s lemma.

Lemma. Let φ : G→ GL(V ) be an irreducible representation, and let T : V → V be a linear
map. Define T ′ : V → V by

T ′ :=
1

|G|
∑
g∈G

φgTφ
−1
g .

Then T ′ = 0.

Proof. This is the “averaging” trick, so T ′ ∈ HomG(ψ, φ), and thus T ′ = 0 by Schur’s lemma
since φ and ψ are irreducible and not equivalent. �

Assume now that φ : G→ GLn(C) and ψ : G→ GLm(C) are matrix representations. We
represent an arbitrary T ∈ Hom(Cn,Cm) by an arbitrary matrix X = (xij) ∈ Matm×n(C).

Let X ′ = (x′ij) ∈ Matm×n(C) be the matrix representing T ′, so

X ′ :=
1

|G|
∑
g∈G

ψgXφg−1 .

By the lemma X ′ = 0.
The matrix entries of X ′ are

x′ij =
1

|G|
∑
g∈G

∑
u,v

ψiu(g)xuvφvj(g
−1),

where 1 ≤ u ≤ m and 1 ≤ v ≤ n. Since X ′ = 0, we get

0 =
∑
u,v

[
1

|G|
∑
g∈G

ψiu(g)φvj(g
−1)

]
xuv.

Since X is arbitrary, we can set xuv = 1 and all other entries of X to 0, and get another
Schur orthogonality relation: Schur orthogonality rela-

tion

0 =
1

|G|
∑
g∈G

ψiu(g)φvj(g
−1) for all 1 ≤ i, u ≤ m, 1 ≤ v, j ≤ n.

In particular, taking u = i and v = j gives

0 =
1

|G|
∑
g∈G

ψii(g)φjj(g
−1) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Summing over all i and j gives

〈χψ, χφ〉 =
∑
i,j

1

|G|
∑
g∈G

ψii(g)φjj(g
−1) = 0.

This is what we wanted.

21. The regular representation

Any group action G→ Sym(X) on a finite set X can be upgraded to a representation,
which I will call a permutation representation. To do this, let V be a vector space with permutation representation

a basis B which is in bijective correspondence in X. I’ll write ux ∈ B for the basis element
corresponding to x ∈ X. I’m going to write CX for this vector space, which has dimension
d = |X|.

Now let
ρ : G→ GL(CX)
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be defined by
ρg(ux) := ugx.

This is a representation of G of dimension d = |X|. There is an easy formula for its character.

Proposition. If χ is the character of the permutation representation associated to the action
by G on X, then

χ(g) = |Fix(g)| , where Fix(g) := {x ∈ X | gx = x }.
In particular, the characters of permutation representations are non-negative integer valued.

Proof. List the elements of X as x1, . . . , xd, and write ui for uxi . Let A = [φg]B, the matrix
of φg with respect to the basis B. Then A is a permutation matrix. The (i, i) entry is either
0 (if gxi 6= xi), or is 1 (if gxi = xi). �

Example (The standard representation of Sn). The standard representation ρ : Sn → GLd(C)
is an example of a permutation representation. Its character is given as follows: if g ∈ Sn
has cycle type 1r12r2 · · ·nrn (i.e., a product of r1 1-cycles, r2 2-cycles, etc., pairwise disjoint,
with r1 + · · ·+ rn = d), then χρ(g) = r1.

The regular representation of G is the one associated to the “left regular action” by G regular representation

on X = G, defined by x 7→ gx. It has dimension n = |G|. Explicitly, it is a homomorphism
L : G→ GL(CG) given by

Lg(uh) := ugh.

Its character is given by

χL(g) =

{
|G| if g = e,

0 if g 6= e.

It turns out that every irreducible representation of G is a subrepresentation of the regular
representation. In fact, we have the following.

Theorem. Let L be the regular representation of G, and let λ1, . . . , λs be a complete list of
pairwise inequivalent irreducible representations of G, and write dk = dimλk > 0. Then

L ∼ d1λ1 ⊕ · · · ⊕ dsλs.
Furthermore,

|G| = d2
1 + · · ·+ d2

s.

Proof. Let χk = χλk . Compute:

〈χL, χk〉 =
1

|G|
∑
g∈G

χL(g)χk(g) = χk(e) = dk.

So by the orthogonality relation, dk = the multiplicity of λk in ρ. Since irreducible
representations have positive dimension, dk > 0, there is at least one copy of λk in ρ.

Finally, we can evaluate χL at e:

|G| = χL(e) =
∑
k

dkχk(e) =
∑
k

d2
k.

�
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22. The number of irreducible representations

We have already shown that the number of irreducible representations (up to equivalence),
is bounded above by the number of conjugacy classes in G. We will now show these numbers
are equal.

Lemma. Let φ : G → GL(V ) be a representation, and let f ∈ Lc(G) be a class function.
Define a function Tf : V → V by

Tf :=
1

|G|
∑
g∈G

f(g)φg.

Then Tf ∈ HomG(φ, φ).

Proof. For a ∈ G we have

φaTfφa−1 =
1

|G|
∑
g∈G

f(g)φaga−1

=
1

|G|
∑
h∈G

f(a−1ha)φh where h = aga−1,

=
1

|G|
∑
h∈G

f(h)φh = Tf ,

since f is a class function so f(a−1ha) = f(h). �

We get a different operator for each representation φ, so I might write T φf instead of just

Tf to emphasize this.

Corollary. Let φ be an irreducible representation of dimension d and character χ. Then

Tf =
∑
g∈G

f(g)φg = λI, λ =
1

d
〈χ, f〉.

Proof. By Schur’s lemma, T ′ = λI for some λ. To compute λ we compute the trace of Tf :

Tr(Tf ) =
1

|G|
∑
g∈G

f(g)χ(g) = 〈χ, f〉.

Since Tr(λI) = λd, this gives the claim. �

Theorem. Let λ1, . . . , λs be a complete set of pairwise inequivalent irreducible rerpresenta-
tions of G, and write χk = χλk for the character of λk. Then χ1, . . . , χs are an orthonormal
basis of Lc(G), and thus s = the number of conjugacy classes in G.

Proof. We already know that 〈χi, χj〉 = δij , so it suffices to show that if f ∈ Lc(G) is such
that 〈χk, f〉 = 0 for all k, then f = 0.

Let φ : G → GL(V ) be any representation. By complete reducibility, it has the form

φ = φ(1) ⊕ · · · ⊕ φ(d) for some irreducible subrepresetations φ(k) : G → GL(Vk), where

Vk ≤ V is a subspace. Consider the operator T φf ∈ HomG(φ, φ) as defined above by

T φf = (1/ |G|)
∑

g f(g)φg. Note that this formula implies that Tf (Vk) ⊆ Vk, and thus that

T φf restricts to a morphism Tf |Vk ∈ HomG(φ(k), φ(k)), and from its formula we see that in

fact Tf |Vk = T φ
(k)

f . By the above Corollary and the hypothesis that f is orthogonal to all

irreducible characters, we must have Tf |Vk = 0 for all k, and therefore that Tf = 0. Thus,

we have proved that the operator T φf ∈ HomG(φ, φ) is the zero map for every representation

φ.
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Let L be the regular representation, and evaluate TLf at the element ue ∈ CG:

TLf (ue) =
1

|G|
∑
g∈G

f(g)ug.

Since the ug are a basis of the regular representation, TLf = 0 implies f(g) = 0 for all g ∈ G.
Thus f = 0 as desired.

�

23. Character table for D4

Let D4 be the dihedral group of order 8, generated by elements r, j with r4 = e = j2 and
rj = jr−1.

8 1 2 1 2 2

e r r2 j jr
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 1 −1 1 1 −1
χ4 1 −1 1 −1 1
χ5 2 0 −2 0 0

The first four characters are homomorphisms G→ C×. If G = D4, then [G,G] = {e, r2}, so
G/[G,G] is a Klein 4-group.

We can deduce the fifth character using the orthogonality relations and the fact that its
dimension χ5(e) must be 2, since 8 = 12 + 12 + 12 + 12 + 22. (For instance, we must have
〈χ1 + χ2 + χ3 + χ4, χ5〉 = 0, from which you can read off that χ5(r2) = −χ5(e). Then the
fact that 〈χ5, χ5〉 = 1 already implies that χ5 vanishes on Gr {e, r2}. Alternately, we can
use the fact that we must have χkχ5 = χ5 for k = 2, 3, 4 to deduce this.)

The character χ5 is that of the “obvious” real representation φ : G→ GL2(R), defined by

φ(r) =

[
0 −1
1 0

]
, φ(j) =

[
1 0
0 −1

]
.

Since GL2(R) ≤ GL2(C), this also gives a complex representation.

24. Second orthogonality relations

Let λ1, . . . , λs be a complete list of inequivalent irreducibles, with characters χ1, . . . , χs
and let g1, . . . , gs be a list of representatives of conjugacy classes in G. Then we can form
the character table of G, which is really an s× s complex matrix:

g1 . . . gs
χ1 χ1(g1) . . . χ1(gs)
...

...
...

χs χs(g1) . . . χs(gs)

Recall that a matrix U ∈ Matn×n(C) is unitary if its rows are an orthonormal basis of Cn unitary

(using the usual Hermitian inner product on Cn). This is equivalent to saying UU∗ = I,

where U∗ = U
>

, which is equivalent to U∗U = I, which is equivalent to saying the columns
are an orthornormal basis of Cn. The character table is almost a unitary matrix. We write
Cl(g) := {hgh−1 | h ∈ G } for the conjugacy class of g, and Cent(g) := {h ∈ G | hgh−1 = g }
for the centralizer subgroup of g.

Lemma. The matrix U = (uij) ∈ Mats×s(C) defined by

uij = χi(gj)/
√
cj , cj = |Cent(gj)| = |G| / |Cl(gj)|
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is a unitary matrix.

Proof. The inner product of the ith and jth rows of U is
s∑

k=1

uikujk =
s∑

k=1

1

ck
χi(gk)χj(gk)

=
s∑

k=1

|Cl(gk)|
|G|

χi(gk)χj(gk)

=
1

|G|

s∑
k=1

∑
g∈Cl(gk)

χi(g)χj(g)

=
1

|G|
∑
g∈G

χi(g)χj(g) = 〈χi, χj〉 = δij .

�

Theorem (Second orthogonality relations). Let χ1, . . . , χs be a complete list of pairwise
distinct irreducible characters. For any g ∈ G we have

s∑
k=1

χk(g)χk(g) = |Cent(g)| = |G| / |Cl(g)| ,

and for any g, h ∈ G which are not conjugate to each other, we have
s∑

k=1

χk(g)χk(h) = 0.

In particular, columns of the character table are pairwise orthogonal.

Proof. This is just the fact that the columns of U are also an orthonormal basis, so∑s
k=1 ukiukj = δij . �

Example (Character table for S4). It looks like this.

24 1 6 3 6 8

e (1 2) (1 2)(3 4) (1 2 3 4) (1 2 3)
χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 2 0 2 0 −1
χ4 3 1 −1 −1 0
χ5 3 −1 −1 1 0

24 4 8 4 3

I have put the numbers |Cent(g)| = |G| / |Cl(g)| along the bottom row, to make it easier to
verify the second orthogonality relations.

Exercise. Prove this character table.

Exercise. There is a 3-dimenional real representation of S4, coming from the fact that S4 is
isomorphic to the subgroup G ≤ SO(3) ≤ GL3(R) ≤ GL3(C) of rotational symmetries of
the cube. Determine the character of this representation, and identify its decomposition as
a direct sum of irreducible complex representations.
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25. Frobenius divisibility, part 1

Here is one more fact about the dimensions of irreducible representations, whose proof is
a bit more subtle than what we have seen so far.

Theorem (Frobenius). Let φ be an irreducible representation of G. Then d = dimφ divides
n = |G|.

Consider any representation φ : G→ GL(V ). For any x ∈ G, define the linear operator

Tx :=
∑

g∈Cl(x)

φg.

Note that this only depends on the conjugacy class of x. We have φaTxφa−1 = Tx for any
a ∈ G, so Tx ∈ HomG(φ, φ).

Now suppose φ is irreducible, so Schur’s lemma says that Tx = λxI for some λx ∈ C. We
can actually compute λx by taking traces:

λx =
|Cl(x)|
d

χ(x)

where χ is the character of φ. Note that λe = 1.
Consider the linear map

∑
g∈G χ(g−1)φg =

∑
xi
χ(x−1

i )Txi , where in the second formula
we sum over a list x1, . . . , xs of representatives of the distinct conjugacy classes in G. By
taking the trace of this, and using the orthogonality relation 〈χ, χ〉 = 1, we get an identity

n

d
=
∑
xi

χ(x−1
i )λxi .

Let R = the abelian subgroup of C generated under addition by the finite set of elements

ζkλx, 0 ≤ k < n, x ∈ G,
where ζ = e2πi/n. Since each χ(g) is a sum of n-th roots of unity, we have from the above
identity that n/d ∈ R.

The theorem is an immediate consequence of the following.

Proposition. R ∩Q = Z.

Proof of Frobenius divisibility. We have shown that the rational number n/d is in R, and
therefore by the proposition is an integer. �

We will prove this proposition in the next section.

Example (Character table of S5). Here it is.

120 1 10 15 20 30 24 20

e (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2 3)(4 5)
χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 1 −1
χ3 4 2 0 1 0 −1 −1
χ4 4 −2 0 1 0 −1 1
χ5 5 −1 1 −1 1 0 −1
χ6 5 1 1 −1 −1 0 1
χ7 6 0 −2 0 0 1 0

120 12 8 6 4 5 6

The abelian characters are χ1 and χ2, where χ2 is the sign representation. The sum
χ1 + χ3 = χρ, where ρ is the standard 5-dimensional representation, can be computed
explicitly.
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Exercise. Explain how to prove the rest of the character table.
(It is possible to do this just using general facts about characters of irreducible represen-

tations that we have proved, including Frobenius divisibility, applied to G = S5, together
with the existence of the standard representation.)

(In addition, you could introduce some new representations whose characters you can
compute. For instance, for every subgroup H ≤ S5 there is a permutation representation
C(S5/H). These won’t usually be irreducible, but they can contain new irreducible repre-
sentations. For instance H = N(〈(1 2 3 4 5)〉), which gives a 6 dimensional rerpresentation,
or H = N(〈(1 2 3)〉) or H = N(〈(1 2)〉), which give 10 dimensional representations.)

26. Frobenius divisibility, part 2

Recall that for an irreducible representation φ, we defined R ≤ C to be the subgroup
generated by the set of numbers of the form ζkλg, 0 ≤ k < n and g ∈ G, where ζ = e2πi/n

and λg is defined by

Tg =
∑

x∈Cl(g)

φx = λgI.

Our goal is to show R ∩Q = Z.

Lemma. R is a subring of C, and 1 ∈ R.

Proof. By definition (R,+) is a subgroup of (C,+). We have that λe = 1 ∈ R. To show that
R is a subring, it suffices to show that ζiλg ζ

jλh ∈ R for all 0 ≤ i, j < n and g, h ∈ G. Since

ζn = 1, we have ζiζj = ζk for some 0 ≤ k < n. So it suffices to prove a formula of the form

λgλh =
∑
xi

mxiλxi

where the mxi ∈ Z.
Since Tg = λgI, it suffices to prove that

TgTh =
∑
xi

mxiTxi ,

for some mi ∈ Z. We have that

TgTh =
∑

u∈Cl(g)

∑
v∈Cl(h)

φuv =
∑
x∈G

mxφx,

where mx is the size of the set Mx := { (u, v) ∈ Cl(g)× Cl(h) | uv = x }. For any y ∈ G,
(u, v) 7→ (yuy−1, yvy−1) defines a bijection Mx →Myxy−1 . Thus mx = mx′ whenever x and
x′ are conjugate, so

TgTh =
∑
x∈G

mxφx =
∑
xi

mxiTxi .

�

Recall that the underlying abelian group (R,+) of R is finitely generated, by definition.
Thus the claim that R ∩Q = Z follows from the following statement.

Lemma. Let R be a subring of C containing 1, such that the underlying abelian group of R
is finitely generated. Then R ∩Q = Z.

Proof. Since 1 ∈ R it is clear that Z ⊆ R ∩Q.
Note that (R,+), in addition to being finitely generated, is torsion free, since nr 6= 0 when

n ∈ Zr {0} and r ∈ Cr {0}, since C is a field of characteristic 0. So by the classification of
finitely generated abelian groups, (R,+) is isomorphic to Zm for some m ≥ 1. So we can
choose a Z-basis B = {e1, . . . , em} for R.
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Because R is a ring, for any α ∈ R we get a function F : R→ R defined by F (r) := αr,
which is a homomorphism of abelian groups. In terms of the basis B, we will have formulas

F (ej) =
m∑
i=1

cijei, cij ∈ Z.

That is, F is represented in terms of the basis B by some matrix C ∈ Matm×m(Z).
Now let α = a/b ∈ R ∩Q, where a, b ∈ Z, b 6= 0. Then

aej = bαej = bF (ej) = b
∑
i

cijej =
∑
i

(bcijei).

Since B is a Z-basis, it is Z-linearly independent, so we can match coefficients of the eis on
both sides of the equation. In particular, equality of the coefficients of ej gives

a = bcij , so α =
a

b
= cij ∈ Z

as desired. �

27. Induced characters

Let G be a group and H a subgroup, with m = [G : H]. Then we have a function

ResGH : Lc(G)→ Lc(H)

which sends class functions on G to class functions on H, by restriction to the subgroup:

(ResGH f)(h) := f(h), h ∈ H.
We call ResGH the restriction function. restriction

Proposition. If χ is the character of a representation of G, then χ′ = ResGH χ is the
character of a representation of H.

Proof. Let φ : G → GL(V ) be a reprentation with χ = χφ. Let ψ : H → GL(V ) the
restriction of this map to the subgroup H. Then clearly the character of ψ is χ′. �

If χψ = ResGH χφ, we say that ψ is the restricted representation of φ. restricted representation

It turns out there is a way to turn class functions on a subgroup intto class functions
on the whole group. Given H ≤ G and f ∈ Lc(H), we define f ′ = IndGH f ∈ Lc(G) by the
formula

f ′(g) :=
1

|H|
∑
x∈G

xgx−1∈H

f(xgx−1).

This is a class function on G, since if g′ = tgt−1 for some t ∈ G, then

f ′(tgt−1) =
1

|H|
∑
x∈G

(xt)g(xt)−1∈H

f((xt)g(xt)−1) =
1

|H|
∑
y∈G

ygy−1∈H

f(ygy−1), y = xt.

Thus this construction defines a linear map

IndGH : Lc(H)→ Lc(G),

and is called the induction function. induction
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Remark. Since f is a class function on H, if we replace x by xh, we get the same value in:
f(xgx−1) = f(hxgx−1h−1). It is thus often convenient to write the formula for induction as
follows. Choose a set R = {xi}1≤i≤m of representatives of right H-cosets in G (so Hx = Hxi
for exactly one xi ∈ R). Then the induced class function f ′ = IndGH f is given by

f ′(g) =
∑
xi∈R

xigx
−1
i ∈H

f(xigx
−1
i ).

Exercise. Show that H is a normal subgroup of G iff for all f ∈ Lc(H) the induced class
function f ′ = IndGH f ∈ Lc(G) vanishes on GrH.

Exercise. Let G be any finite group, and H = {e} ≤ G the trivial subgroup. Compute
χ′ = IndGH χ, where χ is the trivial character on H. What representation of G does χ′

correspond to?

Induction is “adjoint” to restriction, in the sense of linear algebra.

Proposition (Frobenius reciprocity). For any f ∈ Lc(H) and f ′ ∈ Lc(G), we have

〈IndGH f, f
′〉G = 〈f, ResGH f

′〉H .
(I’ve put a subscript on the inner products to indicate that they are happening in different
vector spaces, namely Lc(G) and Lc(H).)

Proof. Compute:

〈IndGH f, f
′〉G =

1

|G|
1

|H|
∑
g∈G

∑
x∈G

xgx−1∈H

f(xgx−1)f ′(g)

=
1

|G|
1

|H|
∑
h∈H

∑
x∈G

f(h)f ′(x−1hx) reindex sum by h = xgx−1,

=
1

|G|
1

|H|
∑
h∈H

∑
x∈G

f(h)f ′(h) f ′ ∈ Lc(G),

=
1

|H|
∑
h∈H

f(h)f ′(h) = 〈f, ResGH f
′〉H .

�

It turns out that induction also sends characters to characters.

Proposition. If χ is the character of a representation of H, then χ′ = IndGH χ is the
character of a representation of G.

If χψ = IndGH χφ, we say that ψ is the induced representation of φ. Note that by the induced representation

formula for induction, χ′(e) = [G : H]χ(e) and thus dimψ = [G : H] dimφ.
We will prove the existence of induced representations soon.

Example. Let ψ be the irreducible 2-dimensional representation of S3, with character

χ(e) = 2, χ((1 2)) = 0, χ((1 2 3)) = −1.

We can regard S3 as a subgroup of S4 (i.e., as the subgroup of permutations of {1, 2, 3, 4}
which fix 4), and so we can form χ′ = IndS4

S3
χ. We can compute this:

χ′(e) = 8, χ′((1 2)) = 0, χ′((1 2)(3 4)) = 0, χ′((1 2 3 4)) = 0, χ′((1 2 3)) = −1.
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Note that (1 2)(3 4) and (1 2 3 4) are not conjugate in S4 to any elements of S3, and (1 2) is
only conjugate to 2-cycles, on which χ gives 0. For the remaining cases,

χ′(e) =
1

6

∑
x∈G

xex−1∈S3

χ(xex−1) =
24

6
χ(e) = 8,

and

χ′((1 2 3)) =
1

6

∑
x∈G

x(1 2 3)x−1∈S3

χ(x(1 2 3)x−1) =
1

6

∑
x∈S3

χ(x(1 2 3)x−1) = χ(1 2 3) = −1.

So there is is an 8-dimensional representation ψ of S4 with this character. It is not irreducible:
〈χ′, χ′〉S4 = 3. Since the only way to write this as a sum of squares is 3 = 12 + 12 + 12, this
will be the sum of three distinct irreducible S4-representations. (Exercise: determine these
irreducibles, by referring to the character table for S4 given earlier.)

Exercise. Let H ≤ G. Show that if χ ∈ Lc(H) is the trivial character (χ(h) = 1 for all h ∈ H),
then χ′ = IndGH is the character of the permutation representation ρ : G→ GL(C(G/H)) of
the left-coset action by G on G/H.

28. Character table for D5

Let’s start with a character table for Z5, which we think of as the cyclic subgroup 〈r〉 ≤ D5.

e r r2 r3 r4

χ1 1 1 1 1 1
χ2 1 ζ ζ2 ζ3 ζ4

χ3 1 ζ2 ζ4 ζ ζ3

χ4 1 ζ3 ζ ζ4 ζ2

χ5 1 ζ4 ζ3 ζ2 ζ

where ζ = e2πi/5.
We can induce these characters from 〈r〉 to D5, the dihedral group of order 10.

10 1 2 2 5

e r r2 j
Indχ1 2 2 2 0
Indχ2 2 α β 0
Indχ3 2 β α 0
Indχ4 2 β α 0
Indχ5 2 α β 0

where α = ζ + ζ−1 = 2 cos 2π/5 and β = ζ2 + ζ−2 = 2 cos 4π/5. Note that

αα+ ββ = α2 + β2 = (ζ2 + 2 + ζ−2) + (ζ−1 + 2 + ζ) = 3 + (1 + ζ + ζ2 + ζ3 + ζ4) = 3,

from which we see that 〈Indχk, Indχk〉 = 1 for k = 2, 3, 4, 5. However, Indχ1 is not
irreducible, since 〈Indχ1, Indχ1〉 = 2.

Using this, we can fill in the whole character table for D5.

10 1 2 2 5

e r r2 j
χ′1 1 1 1 1
χ′2 1 1 1 -1
χ′3 2 α β 0
χ′4 2 β α 0

10 5 5 2



NOTES ON FINITE GROUP REPRESENTATIONS 27

29. Construction of induced representations

Let H ≤ G. Given a representation φ : H → GL(V ) with character χ, we want to
construct a representation ψ : G→ GL(W ) with character χ′ = IndGH χ.

Let
W := {ω : G→ V | ω(hx) = φh(ω(x)) for all x ∈ G, h ∈ H },

the set of all “H-equivariant functions” from the set G to the vector space V . The set W is
a vector subspace of the set of all functions G→ V .

Let R = {xi} ⊆ G be a set of representatives of the right H-cosets in G (so Hx = Hxi
for exactly one xi ∈ R). We see that a function ω ∈W is exactly determined by its values
ω(xi) for xi ∈ R. In fact, this shows that dimW = [G : H] dimV .

Define ψ : G→ GL(W ) by

ψg(ω)(x) := ω(xg), g ∈ G, ω ∈W, x ∈ G.

Lemma. ψ is a representation of G.

Proof. The key part is to show that it is well-defined: that ω ∈W implies ω′ = ψg(ω) ∈W .
This is straightforward: if h ∈ H, then

ω′(hx) = ω(hxg) = φh(ω(xg)) = φh(ω′(x)).

Then we can show that that φ is a homomorphism, since ψg1(ψg2(ω))(x) = ψg2(ω)(xg1) =
ω(xg1g2) = ψg1g2(ω)(x). �

Now we need to compute the character of ψ. For a right H-coset Hx ⊆ G, let

WHx = {ω ∈W | ω(y) = 0 if y /∈ Hx },
the subspace of functions in W which are “supported” on the coset Hx.

Lemma. The vector space W is a direct sum of the collection of subspaces WHxi, where
xi ∈ R, i.e., W = WHx1 ⊕ · · · ⊕WHxm, where m = [G : H].

Proof. We need to show that the map π : WHx1 ⊕ · · ·⊕WHxm →W sending (ω1, . . . , ωm) 7→∑
i ωi is an isomorphism of vector spaces.
Given ω ∈W and xi ∈ R, let

ωi(g) :=

{
ω(g) if g ∈ Hxi,
0 if g /∈ Hxi.

This ωi satisfies ωi(hx) = φh(ωi(g)) for all g ∈ G and h ∈ H, since g ∈ Hxi iff hg ∈ Hxi.
Therefore ωi ∈WHxi by construction. Since ω =

∑
i ωi, the map π is surjective.

If βi ∈WHxi are such that β :=
∑

i βi = 0, then for any g ∈ Hxi we have βi(g) = β(g) = 0,
whence β = 0. Thus π is injective. �

Lemma. We have that ψg(WHx) ⊆WHxg−1 . In particular, ψg(WHx) ⊆WHx iff xgx−1 ∈ H.

Proof. Suppose ω ∈ WHx and let ω′ := ψg(ω). Then for y /∈ Hxg−1 we have ω′(y) =
ω(yg) = 0, since yg /∈ Hx. �

Thus, in terms of the direct sum decomposition W = WHx1 ⊕ · · · ⊕WHxm , the operator
ψg has a “block matrix” decomposition (ψij(g)) where ψij(g) ∈ Hom(WHxj ,WHxi), with
the property that in each row and column only one “entry” ψij(g) is non-zero. To compute
the trace, we only need to worry about the “diagonal” entries ψii, and thus

Tr(ψg) =
∑
xi∈R

Tr(ψii(g)) =
∑
xi∈R

xigx
−1
i ∈H

Tr(ψg|WHxi
),
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since ψii(g) is non-zero only if xigx
−1
i ∈ H.

For any x ∈ G we can define a linear map

Ex : WHx → V, Exω := ω(x)

by evaluation at x.

Lemma. The map Ex : WHx → V is an isomorphism of vector spaces.

Proof. The inverse function is defined by

E−1
x (v)(y) =

{
φh(v) if y = hx for some h ∈ H,

0 if y /∈ Hx.

�

Lemma. If g, x ∈ G are such that xgx−1 ∈ H, then (ψg|WHx
) = E−1

x φxgx−1Ex.

Proof. Let ω ∈WHx. Then

Ex(ψg(ω)) = ψg(ω)(x) = ω(xg), φxgx−1(Ex(ω)) = φxgx−1(ω(x)) = ω(xgx−1x) = ω(xg).

�

Remark. The same argument shows more generally that, when ygx−1 ∈ H, so that ψ(WHx) ⊆
WHy, we have

ψg|Hx = E−1
y φygx−1Ex.

This gives a formula for all the non-zero “blocks” of ψg.

As a consequence, we get that

Tr(ψg) =
∑
xi∈R

xigx
−1
i ∈H

Tr(φxigx−1
i

),

and therefore χψ = IndGH χφ as desired.

30. Representations of products of groups

Let G1 and G2 be groups, and let H = G1 ×G2 be their product.
Given class functions f1 ∈ Lc(G1) and f2 ∈ Lc(G2), we can produce a new class function

f1 ⊗ f2 ∈ Lc(H) on the product, by the formula

(f1 ⊗ f2)(g1, g2) := f1(g1)f2(g2).

The new class function f1 ⊗ f2 is called the product of the characters. It is often just product

written as “f1f2”.
We have a formula for inner products of product characters.

Proposition. If f1, f
′
1 ∈ Lc(G1) and f2, f

′
2 ∈ Lc(G2), then

〈f1 ⊗ f2, f
′
1 ⊗ f ′2〉H = 〈f1, f

′
1〉G1〈f2, f

′
2〉G2 .
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Proof. This is a straightforward calculation:

〈f1 ⊗ f2, f
′
1 ⊗ f ′2〉H =

1

|H|
∑
h∈H

(f1 ⊗ f2)(h) (f ′1 ⊗ f ′2)(h)

=
1

|G1| |G2|
∑
g1∈G1
g2∈G2

f1(g1)f2(g2)f ′1(g1)f ′2(g2)

=

(
1

|G1|
∑
g1∈G1

f1(g1)f ′1(g1)

)(
1

|G2|
∑
g2∈G2

f2(g2)f ′2(g2)

)
= 〈f1, f

′
1〉G1〈f2, f

′
2〉G2 .

�

The tensor product of characters is also a character.

Proposition. If χ is the character of a representation of G1, and χ′ is the character of a
representation of G2, then χ⊗ χ′ is the character of a representation of H = G1 ⊗G2.

If χρ = χφ⊗χψ, we say that ρ is the tensor product representation of φ and ψ. Note tensor product representa-
tionthat by the formula, dim ρ = (dimφ)(dimψ).

I’ll prove the existence of tensor product representations soon. First let’s get the big
consequence: if a group is a product, its representations are determined by the representations
of its factors.

Corollary. Let H = G1×G2. Let χ1, . . . , χr be a complete set of pairwise distinct irreducible
characters of G1, and χ′1, . . . , χ

′
s be a complete set of pairwise distinct irreducible characters

of G2. Then
{χi ⊗ χ′j | 1 ≤ i ≤ r, 1 ≤ j ≤ s }

is a complete set of pairwise distinct irreducible characters of H.

Proof. First, note that {χi ⊗ χ′j} is an orthornormal subset of Lc(H):

〈χi ⊗ χ′j , χk ⊗ χ′`〉H = 〈χi, χ′k〉G1〈χj , χ′`〉G2

= δikδj`.

In particular, each χi ⊗ χ′j is an irreducible character.

To see that it is a complete set, it suffices to show that rs = dimLc(H) = number of
conjugacy classes in H. If h = (g1, g2) ∈ H, then its conjugates in H are the elements of the
form (a1, a2)(g1, g2)(a1, a2)−1 = (a1g1a

−1
1 , a2g2a

−1
2 ), for a1 ∈ G1 and a2 ∈ G2. Thus

ClH(h) = { (x1, x2) ∈ H | x1 ∈ ClG1(g1), x2 ∈ ClG2(g2) } = ClG1(g1)× ClG2(g2).

Thus each conjugacy class C in H corresponds to exactly one pair (C1, C2), where Ck is a
conjugacy class in Gk. �

Remark. If H = G × G, then we can identify G with the diagonal subgroup ∆ of the diagonal subgroup

product, defined by ∆ := { (g, g) | g ∈ G }. By the above, if χ1, χ2 are characters on G, then

χ := ResG×G∆ (χ1 ⊗ χ2)

is also a character on G, with formula

χ(g) = χ1(g)χ2(g).

We have already seen a special case of this, when one of the original characters is 1-
dimensional.
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As a consequence, the subset X(G) ⊆ Lc(G) of characters has operations of addition and
multiplication (defined in the usual way for functions) which are associative and commutative.
Furthermore, multiplication distributes over addition, and these operations have identity
elements (the characters of the 0-representation and the trivial representation respectively).
Thus X(G) has the structure of a commutative semi-ring. (It is not closed under additive commutative semi-ring

inverses, so it is not a commutative ring.)
Although the subset of characters is not a ring, you can enlarge it to get a ring. A virtual

character is any function which is a difference χφ − χψ of two characters. You can show virtual character

that the subset R(G) ⊆ Lc(G) of class functions which are virtual characters is actually a
subring. It is called the representation ring of G. representation ring

Now let’s prove the proposition.

Construction of tensor product representations. Let φ : G1 → GL(V ) and ψ : G2 → GL(W )
be representations. Choose bases v1, . . . , vm of V and w1, . . . , wn of W . Using these bases
we can rewrite these as matrix representations, so that

φx(vj) =

m∑
i=1

φij(x)vi, ψy(wj) =

n∑
i=1

ψij(y)wi.

Let U be any vector space of dimension mn, and choose a basis {ui,k | 1 ≤ i ≤ m, 1 ≤ k ≤ n }
of U . Define ρ : G1 ×G2 → GL(U) by

ρ(x,y)(uj,`) :=

m∑
i=1

n∑
k=1

φij(x)ψk`(y)ui,k.

It is straightforward (but a little tedious), to show that this is a representation:

ρ(x,y)(ρ(x′,y′)(uj,`)) = ρ(x,y)

( m∑
i=1

n∑
k=1

φij(x
′)ψk`(y

′)ui,k

)

=
m∑
i=1

n∑
k=1

φij(x
′)ψk`(y

′)ρ(x,y)(ui,k)

=
m∑
i=1

n∑
k=1

φij(x
′)ψk`(y

′)
m∑
s=1

n∑
t=1

φsi(x)ψtk(y)us,t

=

m∑
s=1

n∑
t=1

( m∑
i=1

φsi(x)φij(x
′)

)( n∑
k=1

ψtk(y)ψk`(y
′)

)
us,t

=
m∑
s=1

n∑
t=1

φsj(xx
′)ψt`(yy

′)us,t

= ρ(xx′,yy′)(uj,`).

To compute the character of ρ, note that the coefficient of uj,` in ρ(x,y)(uj,`) is φjj(x)ψ``(y),
so

Tr(ρ(x,y)) =

m∑
j=1

n∑
`=1

φjj(x)ψ``(y)

=

( m∑
j=1

φjj(x)

)( n∑
`=1

ψ`(y)

)
= Tr(φx) Tr(ψy),
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so χρ = χφ ⊗ χψ. �

Example (Character table of D6). Note that D6 is a product group of the subgroups
〈r2, j〉 ≈ S3 and 〈r3〉 ≈ Z2.

6 1 3 2

〈r2, j〉 e j r2

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

6 2 3

2 1 1

〈r3〉 e r3

χ′1 1 1
χ′2 1 −1

2 2

Thus we get the following table for the product.

12 1 3 2 1 3 2

D6 e j r2 r3 jr3 r5

〈r2, j〉 × 〈r3〉 (e, e) (j, e) (r2, e) (e, r3) (j, r3) (r2, r3)
χ1 ⊗ χ′1 1 1 1 1 1 1
χ2 ⊗ χ′1 1 −1 1 1 −1 1
χ3 ⊗ χ′1 2 0 −1 2 0 −1
χ1 ⊗ χ′2 1 1 1 −1 −1 −1
χ2 ⊗ χ′2 1 −1 1 −1 1 −1
χ3 ⊗ χ′3 2 0 −1 −2 0 1

12 4 6 12 4 6
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