NOTES ON FINITE GROUP REPRESENTATIONS

CHARLES REZK

In Fall 2020, I taught an undergraduate course on abstract algebra. I chose to spend two
weeks on the theory of complex representations of finite groups. I covered the basic concepts,
leading to the classification of representations by characters. I also briefly addressed a
few more advanced topics, notably induced representations and Frobenius divisibility. I'm
making the lectures and these associated notes for this material publicly available.

The material here is standard, and is mainly based on Steinberg, Representation theory
of finite groups, Ch 2-4, whose notation I will mostly follow. I also used Serre, Linear
representations of finite groups, Ch 1—3E]

1. GROUP REPRESENTATIONS

Given a vector space V over a field F, we write GL(V') for the group of bijective linear
maps T:V = V.

When V = F™ we can write GL,(F) = GL(F"), and identify the group with the group
of invertible n x n matrices.

A representation of a group G is a homomorphism of groups ¢: G — GL(V') for some
choice of vector space V. I'll usually write ¢, € GL(V') for the value of ¢ on g € G.

When V' = F", so we have a homomorphism ¢: G — GL,(F), we call it a matrix
representation.

The choice of field F' matters. For now, we will look exclusively at the case of F' = C, i.e.,
representations in complex vector spaces.

Remark. Since R C C is a subfield, GL,(R) is a subgroup of GL,(C). So any real matrix
representation of GG is also a complex matrix representation of G.

The dimension (or degree) of a representation ¢: G — GL(V) is the dimension of the
vector space V. We are going to look only at finite dimensional representations. (Note: our
textbooks prefer the term “degree”, but I will usually call it “dimension”.)

2. EXAMPLES OF GROUP REPRESENTATIONS
Ezample (Trivial representation). ¢: G — GL1(C) = C* given by ¢, =1 for all g € G.

Warning. the set V' = {0} is a vector space (its 0 dimensional). I'm going to follow convention
and sometimes write “0” for this vector space. Then GL({0}) is the trivial group. Thus
there is always a representation G — GL({0}), which is even more trivial that the trivial
representation. If I need to mention this I'll call it the “O-representation”.

We write Z,, for the cyclic group of order n, whose elements are congruence classes
[k] :={x €Z |z =k (mod n) }, and whose group law is addition.

Ezample. ¢: Zy — GL1(C) = C* by ¢y = ik

Date: May 13, 2022.

More precisely, I'm following Steinberg, except that I'm avoiding all references to “unitary representations”.
Where this notion appears in proofs, I'm instead using arguments based on Serre’s elegant proofs. (There’s
nothing wrong with knowing about unitary representations, but it’s overkill given that I don’t get very far
into the material.)
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k

0 —1
Ezample. ¢: Z4 — GL2(C) by ¢y = [1 0 } )
Ezample. For any n > 1, the map ¢: Z, — C* by ¢y := e2rk/n

Ezample (Standard representation of Sy). p: S, — GL,(C) defined so that p, is the
permutation matrix of g:

Py = legry - egml;
whose k-th column is the standard basis vector ey ;. For instance, p: S3 — G'L3(C) with
010 0 0 1
paz =11 0 0], paz3 = (1 0 0Of,
001 010

etc.

Given any homomorphism ¢: H — G of groups, and a representation ¢: G — GL(V') of
G, we get a representation ¢ o of H:

HY% 6% arnw).

When ¢: H — G is the inclusion of a subgroup, we write ¢|g := ¢ o1 and call it the
restriction of ¢ to H.

Example. Let p: S3 — GL3(C) be the standard representation of S3, and let 7: Sy — S3
be a surjective homomorphism (whose existence we have shown earlier: S5 is isomorphic
to the quotient S;/V where V' < Sy is the subgroup generated by elements of the form
(a b)(cd) € Sy). This gives a 3-dimensional representation ¢ o 7w of Sy.

FEzample. Let V = the set of all continuous functions f: R — R. This is an infinite
dimensional vector space. Define ¢: Zo — GL(V') by

dp(f) =g,  g(x):=g((-1)z).

This is an example of an infinite dimensional representation of Z.

Remark. A representation of G consists of a choice two pieces of data (V, ¢): a vector space V/
and a homomorphism ¢: G — GL(V'). As a shorthand, I'll usually refer to the represetation
by “@”, but some people prefer to refer to it by “V”.

3. EQUIVALENCES OF REPRESENTATIONS

Fix the group G, and let ¢: G — GL(V) and ¢p: G — GL(V) be representations. An
equivalence is a linear isomorphism 7': V' — W of vector spaces such that

qu:To%oT_1 for all g € G.

We write ¢ ~ 9 and say the representations are equivalent if there exists an equivalence.

(Exercise: “equivalence” is an equivalence relation on the collection of representations of G:
if T is an equivalence ¢ ~ 1, and S is an equivalence ¢ ~ p, then S o T is an equivalence

¢~ p.)
Ezample. Define ¢, : Z,, — GLy(C) by
B = cos2mk/n  —sin27nk/n - o2mk/n 0
k] *= |sin2nk/n  cos2rwk/n |’ kL= o  e—2mk/n

Then left multiplication by A := [_11 z] gives an equivalence: verify that 1, = Ag,A71.

restriction

equivalence of representa-
tions

equivalent
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Let ¢: G — GL(V) be a representation of dimension n. Choose a basis B = {v1,...,v,}
of V. We get a vector space isomorphism 7: V — C" by sending v € V to its set of
coordinates wrt B:

T(xiv1 + -+ Tpvy) = (T1,. .., Tn), T1,...,Tn € F.
Let ¢, := Tp,T 1. That is, 1y = [¢4] 5, the matrix representing ¢, in the basis B. Then

¥: G — GL,(C) is a homomorphism, and T gives an equivalence of representations ¢ ~ .

Thus, every representation is equivalent to a matrix representation.
Our basic goal is to classify representations of G up to equivalence.

4. INVARIANT SUBSPACES

Given a representation ¢: G — GL(V), a vector subspace W < V is G-invariant (or
just invariant) if ¢,(W) = W for all g € G, where ¢,(W) C V is the image of W under
the function ¢,.

Given a such a G-invariant subspace, we can restrict ¢ to a representation

by (¢|lw)g(w) := ¢(w). We call |y a subrepresentation of ¢.
Ezample. Consider the standard representation p: S,, — GL,(C). Let W = Cv where v =

e1+---+en. Then W is an invariant subspace, since pg(v) = eg(1)+- - +eg(n) = €1+ +en.

The restricted representation p|y is equivalent to the trivial representation.

Ezample. Consider the standard representation p: S3 — GL3(C). Let U = Cx + Cy, where
T =e1 —ey and y = ex — e3. Then U is an invariant subspace. To see this, it suffices to
check that py(U) C U for g € {(12), (123)}. We compute

paz(r) =—z, pu2y)=z+y, paz23)(T) =y, pu23(y)=—-z-y.
The restricted representation p|y is equivalent to a matrix representation ¢: G — G L2(C)
with

-1 1 0 -1
¢(12): |:0 1:|7 ¢(123): |:1 _1:|

Note: it turns out these are the only invariant subspaces of p: S3 — GL3(C), other than
0 = {0} and C3.

5. IRREDUCIBLE REPRESENTATIONS
We say that a representation ¢: G — GL(V) is irreducible if (i) V' # 0, and (ii) the
only G-invariant subspaces are 0 and V.
Ezxample. Any 1-dimensional representation is irreducible.

Ezample. The standard representation p: S3 — GL3(C) is not irreducible. But the two
subrepresentations p|y and p|y that we found turn out to be irreducible.

Ezample. Here’s a proof that the representation ¢: G — GLy(C) defined earlier is irreducible.

Remember that ¢(; 9) = [_01 ﬂ , P123) = {(1) :ﬂ If this is not irreducible, then there

is a 1-dimensional subspace W < C? which is invariant. Write W = Cuv for some v € C2.
Then v # 0, and ¢4(v) € Co for all g € G, i.e., v must be an eigenvector for every g € G.

But we can check explicitly that

of] -l

are (up to scalar) the only eigenvectors of ¢ 9), and that neither is an eigenvector of P(123)-

G-invariant subspace

invariant subspace

subrepresentation

irreducible representation
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6. DIRECT SUM OF REPRESENTATIONS

Given vector spaces Vi, ..., V,, their external direct sum (or simply direct sum) is a

vector space V =V, @ --- @ V,,, whose underlying set is the direct product V3 x --- x V.

(You won’t confuse anyone if you call it the direct product, but it is usually called “direct
sum”.)

Given representations ¢(*): G — GL(V}), k = 1,...,n, their external direct sum is
the representation ¢: G — GL(V'), where

Vi=Vi@- @V,  6:GoGLV),  ¢glar,...,zn) = (o) (21),..., 80" (zn)).
Conventionally, we write ¢ = ¢ @ --- @ ¢(™ for this homomorphism.

Exzample (Direct sums of matrix representations). If V; = C™ and Vo = C™2, then we can
identify V; @ Vi with C™ "2, Thus, given ¢U): G — G Ly, (C) for j = 1,2, the direct sum
representation has block matrix form

(1)
0
(0 © o), = [ 0 <2>] |
g

Say that V is an internal direct sum of subspaces Vi,...,V,, <V if the map
Vio-—-oVy,—=V,  (21,...,z0) =21+ + 1y

is an isomorphism.

Note: if n = 2, then V is an internal direct sum of Vi,Vo < V iff Vi + V5, = V and
ViNnVe =0. When n > 2 there is also a criterion like this, but it’s more complicated to
state.

If : G — GL(V) is a representation, and Vi,...,V,, < V are G-invariant subspaces,
and if V is an internal direct sum of these subspaces, then we say we say that ¢ is an
internal direct sum of the subrepresentations ¢|y, . In this case, there is an equivalence of
representations (¢|v,) @ - @ (¢|v;,,) ~ ¢ between ¢ and the external direct sum built from
the subrepresentations.

We say that ¢: G — GL(V) is decomposable if it is an internal direct sum of two non-0
invariant subspaces V; and Va. (Le., both V; and V, have positive dimension.)

We say that ¢: G — GL(V) is completely reducible if it is equivalent to direct sum of
a finite sequence of irreducible subrepresentations.

Proposition. If ¢: G — GL(V) and ¢: G — GL(W) are equivalent representations, then
¢ is irreducible/decomposable/completely reducible iff 1) is.

Proof. Here is the proof for irreducibility. Let T: V' — W be an equivalence. I just need to
show that v irreducible implies ¢ irreducible. If ¢ is not irreducible, then there exists an
invariant subspace V' <V such that V' # 0 and V' # V. Let W/ = T(V'). Then W' is an
invariant subspace of W such that W’ # 0 and W' # W. O

7. MORPHISMS OF REPRESENTATIONS

Let ¢: G — GL(V) and ¢: G — GL(W) be two representations of G. A morphism of
of representations from ¢ to v is a linear map T: V' — W such that

YgoT =T o, for all g € G.

Such a T is also sometimes called an intertwining operator.
Note that if T" is a bijection, then the above identity can be rewritten as

wg:TO(bgoT*l for all g € G,

external direct sum
direct sum

external direct sum

internal direct sum

internal direct sum

decomposable

completely reducible

morphism of representa-
tions

intertwining operator
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so a morphism which is a bijection is exactly what we called an equivalence.

Given vector spaces V, W, I'll write Hom(V, W) for the set of linear maps V' — W. Note
that Hom(V, W) is also a vector space: you can add linear maps, and multiply a linear map
by a scalar.

Given representations ¢: G — GL(V) and ¥: G — GL(W), write

Homg(¢,¢) == {T € Hom(V, W) | yT =Ty Vg€ G}
for the set of morphisms of representations. Note that this is a vector subspace of Hom(V, W):
if T, T € Homg(¢,v) and ¢, ca € C, then
Yg(c1T1 + caTy) = 1T + capy Ty = c1T1¢g + c2Topy = (c1Ty + 1) dy.

Note that if V' and W are finite dimensional vector spaces, then so is Hom(V, W), and
thus so is Homg (¢, ).

Proposition. Let T: V. — W be a morphism of representations ¢: G — GL(V) and
V: G — GL(W). Then the subspaces ker(T) <V and T(V) < W are invariant subspaces.

Proof. This is straightforward: If v € Ker(T'), then T'(¢4(v)) = 1g(T(v)) = ¢4(0) = 0, so
¢g(v) € Ker(T). If w="T(v) € T(V), then g(W) = 1y(T'(v)) = T(¢q4(v)) € T(V). O

Ezercise. It turns out that if ¢: G — GL(V) and ¢: G — GL(W) are representations, then
Hom(V, W) is also a representation! Define
v: G — GL(Hom(V,W))
by
VQ(T) = ¢QT¢g*1'
Show that this defines a representation. Then show that v4(7) = T for all g € T iff
T € Homg (¢, v).

8. THE AVERAGING TRICK FOR MORPHISMS

Given representations ¢: G — GL(V) and ¢: G — GL(W), and a linear map T' €
Hom(V, W), there is a way to produce from 7" a morphism 7" € Homg (¢, 1) by “averaging
T over group elements”.

Proposition (Averaging trick). Let ¢: G — GL(V) andy: G — GL(W) be representations
of a finite group G. Given a linear map T € Hom(V, W), define a function T': V. — W by

/. i —1
T = @ Z%T% .

geG
Then T'" € Homg (o, 1).

Proof. First, note that 7": V' — W is certainly a linear map, since 14, T', and qﬁ;l are linear.
To show that it is a morphism of representations, we show 1, 1"¢; ' = T" for all a € G.

1
vaT'b01 = 15 > tathgToy b,

geqG

1 _
=@ > agT oy,

geG

Z Tt =T where h = ag.
heG

_ 1
|G
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FEzercise. Show that if T' € Homg(¢, ), then TV =T.

Remark. This is the first fact which relies on the fact that G is finite, and on the fact that
the field is C (or at least, has characteristic 0). Clearly, we need G finite so that we can
divide by |G| in the averaging formula.

We also need the field F' to have “characteristic 07, i.e., weneed 1 4+---4+1#01in F, so
that we can divide by |G|. We cannot use the averaging trick for representations over the
finite field F' = Z,, when p divides |G/|.

Representation theory over fields of positive characteristic is called modular representation
theory.

Ezample. Let ¢,v: Z4s — GL2(C) be given by

k . k
o k 0 —1 o —k 1 0
¢[k}—A—[1 0] ; Y =B —[0 l] .
We can get a morphism from ¢ to ¥ by starting with the identity matrix and averaging:

1
Pi=(I+ BA '+ B?A7? + B3A7)

171 0 0 =2 1 0 0 =2 111 4
_4<{0 1]+[i 0}*{0 1]+[i OD_QL‘ 1}’
which gives a morphism (in fact, an equivalence) from ¢ to .

9. DECOMPOSABILITY OF REPRESENTATIONS OF FINITE GROUPS

Proposition. Every non-0 (finite dimensional, complez) representation of a finite group is
either irreducible or decomposable.

Proof. Consider a representation ¢: G — G L(V') which is not irreducible. Thus there exists
a G-invariant subspace W <V with W # 0 and W # V.

Therefore there is a linear map 7: V. — V such that Ty = idw and T(V) C W (a
“projection operator” onto the subspace W). To construct T explicitly, choose a basis
V1, ...,0, of V so that vy,...,v; is a basis of W (so 0 < k < n). Let W' = C{vgy1,...,0,},
the span of the remaining basis vectors. Then V is an internal direct sum of W and W' as a
vector space (but perhaps not as a representation). We define T so that T'(v;) = v; if i < k,
and T'(v;) = 0if i > k. Note that TT =T.

Now average T to get T": V — V, where

p_ 1
T = @ D bgTdy-1.

geqG

Note that 77 € Homg(¢, ¢), since this is the averaging trick.
We have that T'(V') C W, since T'(¢,-1(v)) € W for all v € V, and thus ¢,Td,-1(v) € W
since W is an invariant subspace.
We have that T”|y = idyy, since for w € W, ¢, -1(w) € W, so T'¢y—1(w) = ¢

T'(w) = |(1;| S 6y Ty 1 (w) = |(1;,| S Gygr (w) = w.

geG geG
Since T'(W) C W this implies T"T" = T".
Now consider

g-1(w), s0

W =ker(T')={z eV |T'(z) =0}.
Since T" € Homg (¢, ¢), this is an invariant subspace of V.
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I claim that V is a direct sum of W and W'. Note that for all z € V', we have
=T (x)+ (x — T'(x)), T(x)eW, z-T(x)eW.
This is because T'(I —T") =T —T'T' = 0. Also WN W' = 0, since for x € W N W' we
have z = T'(z) = 0.
We have shown that ¢ is decomposable: it is a direct sum of subrepresentations ¢|y and
Olw. O

10. COMPLETE REDUCIBILITY OF REPRESENTATIONS OF FINITE GROUPS

Theorem (Maschke). Every finite dimensional representation of a finite group is completely
reducible.

Proof. Induction on dimension. That is, if ¢ is not 0 or irreducible, then ¢ ~ ¢(1) @ ¢(z) for
non-0 subrepresentations ¢y and ¢(g), which each have strictly smaller dimension than ¢,
and so are completely reducible by induction. O

Remark. This theorem really does need G to be finite, and the characteristic of the field F
to be 0.
For instance, consider

0 1

This is a representation of the infinite group Z. It is not irreducible, but also not decomposable.
(Exercise: prove this.)
Similarly, for a prime p consider

6127 Galzy), o) = |l ().

This is a representation of Z, in a vector space over Zj,. It is not irreducible, but also not
decomposable. (Exercise: prove this.)

6:7 = GLo(C), (k) = [1 k]

Corollary. If ¢: G — GL,(C) is a matriz representation of a finite group, then there exists
T € GL,(C), such that

oM 0 0
0 ¢@ 0
T T = ¢
oo . g
where each o) : G — GLy, (C) is an irreducible matriz representation.
Proof. Since the representation is completely reducible there are subspaces Vi,...,V,. of V
such that (i) V is a direct sum of Vi,...,V, and (ii) each ¢|y, is irreducible. Choose a basis
V1, ...,Un SO that vy,...,v,, are a basis for Vi, vn,41,...,0n, are a basis of Va, etc. Then
let T = vy -+ vp] € GLp(V). O
Ezample. For the standard representation p: S3 — G L3(C), we have
11 00 110 0 11 0
T 'papT=|0[-1 1], T 'pa25T=]0/0 -1 |, T=|1 -1 1
0| 0 1 01 -1 1 0 -1
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11. SCHUR’S LEMMA

This is the key fact for studying irreducible representations.

Proposition (Schur’s lemma). Let ¢: G — GL(V) and ¥: G — GL(W) be irreducible
representations, and T € Homg(¢,v). Then either T =0 or T is an isomorphism. As a
consequence:

(1) If ¢ A, then T = 0.
(2) If ¢ ~ 1, then Homg(o, ) is a 1-dimensional vector space.

In particular, Homg (¢, ) = { X[ | A€ C}.

Proof. First, suppose T' € Homg(¢, 1) with T' # 0. Then ker(T") and T'(V') are invariant
subspaces, and ker(T) # V and T(V)) # 0. But since ¢ is irreducible the only invariant
subspaces are 0 and V', so ker(T') =0 and T(V) = V, so T is an isomorphism.

(1) If ¢ ¢ 1, then T cannot be an isomorphism, so 7' = 0.

(2) First suppose V. = W and ¢ = v, and consider any T' € Homg(¢, ¢). Since T is a

C-linear map, it has an eigenvalue A € C, so T'— AI is not an isomorphism of vector spaces.

But remember that Homg(¢, ¢) is a vector space, so T' — AI € Homg(¢, ¢). Since all non-0
elements of Homg (¢, ¢) are isomorphisms, we must have T'— A\ = 0, i.e., T' = A for some
A

Now if ¢ ~ 1), fix an equivalence S € Homg(v, ¢). Then for any T' € Homg(¢, ), we
have T'S € Homg(,9) = { A\ | A€ C}, so T = AS~! for some ) € C, i.e., Homg(¢, ) =
{AS71| XA € C} which is 1-dimensional. O

12. 1-DIMENSIONAL REPRESENTATIONS AND ABELIAN GROUPS

Proposition. If G is a finite abelian group, then every irreducible representation has
dimension 1.

Proof. Let ¢: G — GL(V') be a representation. Given a € G let T'= ¢,: V' — V. Then for
geG,

¢gT = ¢g¢a = nga = ¢ag = ¢a¢g = T¢ga
That is, because G is abelian, every ¢, is an element of Homg(¢, ¢). By Schur’s lemma, if
¢ is irreducible we must have ¢, = A\, for some \; € G.

In particular, for any v € V, the subspace Cv is G-invariant, since ¢,4(v) = Agv. Thus ¢
can be irreducible iff dimV = 1. O

In terms of matrix representations complete reducibility of representations of finite abelian
groups has the following form.

Corollary. If G is a finite abelian group and ¢: G — GL,(C) a representation, then there
exists T € GL,(C) such that T~1¢,T is diagonal for all g € G.

Corollary. If A € GL,(C) has finite order, then A is diagonalizable.
Proof. If o(A) = n, then there is a representation ¢: Z, — GL,(C) with ¢([1]) = A. O

Given a group G, let [G,G] = (ghg 'h™!, g,h € G) < G, called the commutator
subgroup, i.e., the subgroup of G generated by all commutators of all elements.

FEzercise. [G,G] is a normal subgroup of G, and the quotient group G/[G, G] is abelian.

Ezercise. Every homomorphism G — H to an abelian group H contains [G, G| in its kernel,
and so factors through a homomorphism G/[G,G] — H.

Example. The commutator subgroup of Qs (quaternion group of order 8) is {£1}. The
quotient Qg/[Qs, Qs] is a Klein 4-group, i.e., isomorphic to Zy X Zs.

commutator subgroup
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Proposition. The I-dimensional representations of a finite group G are all of the form
porm:
el eYileNe ok

where ¢ is a 1-dimensional representation of G/|G, G|.

Given an arbitrary representation ¢: G — GL(V) of some dimension d, and a 1-
dimensional representation #: G — C*, we can define a new representation of dimension d,

by

06 := (9 0(9)¢(9))-
Ezercise. If ¢: G — GL(V) is irreducible and #: G — C* a homomorphism, then 6¢ is also
irreducible.

13. TRACE OF A LINEAR OPERATOR

Given a square matrix A = (a;j) € Maty,x,(C) its trace is

Tr A := Za“ = Z azy ij-

i,7=1
We have that Tr(AB) = Tr(BA) for any A, B € Maty,x,(C), since

Tr(AB) = zn: AB);; = ZZ% jio  Tr(BA) = Z (BA)ii = Zwaaﬂ,
=1 =1

=1 j=1 =1 j5=1
which are the same. Therefore Tr(PAP~!) = Tr A if P is invertible, since Tr((PA)P~1) =
Tr(P~1(PA)).

Let T: V — V be a linear map, where dim V' < co. Then we define the trace of T as
follows: Choose a basis B = {v1,...,v,} of V, let A= [T]|p € Maty,x,(C) be the matrix of
T in this basis. Then define Tr T := Tr A.

This does not depend on the choice of basis: with respect to another basis B, we have
[T)p = P[T)gP~! for some invertible matrix P.

Actually, we can do a little better.

Proposition. Let T € Hom(V,V), S € Hom(W,W), and suppose U: V — W s an
isomorphism such that UTU! = S. Then Tr(T) = Tr(S).

Proof. Pick a basis B = {v1,...,v,} of V. Then B’ = {wy,...,w,} with wy = Svy is a
basis of W. We have [S]p = [T]p, and the claim follows. O

Trace behaves well with respect to direct sums.

Proposition. Let T : Vi, — Vi be linear operators for k=1,...,r, where dim V < oo. Let
V=vie - --oV,andT:=T1®---®T,: V= V. Then

(T ®---dT,) =Te(Ty) +--- + Te(T).
Proof. Choose a basis B of V so that A = [T is a block matrix

0 Ay --- 0
A= | . . .
0 0 - A

where A, = [T}]. O

trace

trace of a linear operator
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Note that trace defines a linear map Tr: Hom(V, V) — C, ie., Tr(S+7T) = Tr(5) 4+ Tr(T)
and Tr(AT) = A Tr(T).

Ezercise. Here is a characterization of trace that doesn’t use a choice of basis. For a
finite dimensional V', show that Tr: Hom(V,V) — C is the unique linear map such that
(i) Tr vanishes on commutators, i.e., Tr(AB — BA) = 0 for all A, B € Hom(V,V), and (ii)
Tr I = dim V. [Hint: Reduce to the case of matrices. Let E;; be the matrix with 1 in entry
(4,7), and 0 everywhere else. Then if i # j show that F;; and E;; — Ej; are commutators.]

Ezercise. Compute the trace of Rot,(0) € SO(3), the matrix which describes rotation by
angle @ through an axis passing through a unit vector u in R3. For which values of 6 is this
trace an integer? Compute the trace of Rot,(6) Refl, € O(3), where Refl, is the matrix
which describes reflection across the plane perpendicular to u. For which values of 6 is this
trace an integer?

14. CHARACTER OF A REPRESENTATION

Given a (finite dimensional) representation ¢: G — GL(V), the character of ¢ is a
function x4: G — C (not usually a homomorphism) defined by

Xo(9) = Tr(og).
In practice, you compute the character by choosing a basis of V', so converting ¢ into a
matrix representation. If ¢ is a matrix representation, then

Xo(9) = ¢il9),
i=1

where ¢4 = (¢i;(g)) € GL,(C), with matrix entries ¢;;(g) € C.
The importance of characters is from the following.

Proposition. If ¢ ~ 1, then x4 = xy. That is, the character is an equivalence invariant
of representations.

Proof. If T € Hom(¢, ), then 1y = Tg,T~!, and thus Tr(¢y) = Tr(¢,). O

As we will show later, more is true: characters are a complete equivalence invariant. That
is, ¢ ~ ¢ iff x4 = xy. Thus, classifying representations up to equivalence amounts to
understanding the possible characters.

Ezample. If ¢: G — GL1(C) is a 1-dimensional representation, then x4 = ¢. For this reason,
it is typical to quietly identify 1-dimensional representations with their characters.

Proposition. We have y4(e) = dimV and x4(g7") = x(g). Furthermore, x4(g) is a a
finite sum of numbers of the form C*, where ¢ = €2™/4 with d = o(g), the order of g.

Proof. We can assume WLOG that ¢ is a matrix representation G — GL,(C). The first
claim is clear, since Tr(I) = n. For the second claim, note that if A = ¢, then o(A) divides
d, so it is diagonalizable, and in fact similar to diag(\q, ..., \,), where the eigenvalues must
satisfy )\g = 1. This implies that A\, = (7% for some j;, € Z, and that /\1,;1 = (/% = \,. Thus
TrA=XN 4+ A=+ 4 In, TrA =X+ X, = o (T,
since A~! will be similar to diag(A;*, ..., A\, 1). O

o'

Ezercise. Show that if o(g) = 2, then x4(g) € Z. Show that if g is conjugate to g~! in the
group G, then x4(g) € R. Show that x4(g9) = xg4(e) iff g € ker(¢). (Hint: diagonalize ¢,.)

character
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Ezxercise. Show that |x4(g9)| < |xe(e)| for any g € G. (Hint: use the triangle inequality
|21 4+ zal <zl + -+ zdl.)
Proposition. If ¢ = ¢ @ .- @ ¢(") is a direct sum of representations, then
Xo = Xp) T+ Xgr)-

Proof. Reduce to the case of a matrix representation with block form

oD 0 .. 0
o 0 ¢@ ... 0
0 0 - o0

0

Proposition. If0: G — C* and ¢: G — GL(V) are representations, then the character of
0p: G — GL(V) is
xos(9) = 0(9)xs(9)-

Proof. Immediate from the fact that for A € C, Tr(Agg) = A Tr(¢y). O
Exercise. Let ¢: G — GL,(C) be a matrix representation. Define ¢: G — GL,(C) by
o(g) = o(g),

where for a matrix A = (a;;), we let A = (a;;). Show that ¢ is a representation, and show
that X5 = Xo¢- Also show that ¢ is irreducible iff ¢ is irreducible.

Ezercise. Suppose ¢ € Z(G) is an element in the center of G, and let ¢ be an irreducible
G-representation with character x = x4 and dimension d = dim ¢. Show that |x(c)| = x(e),
and that x(cg) = x(c)x(g)/d for all g € G.

15. CLASS FUNCTIONS

A class function is a function f: G — C such that class function
f(g) = f(hgh™')  for all g,h € G.
That is, the value of f on g depends only on the conjugacy class of g.
Proposition. Characters of representations are class functions.

Proof.
Xo(hgh™) = Tr(¢pgn-1) = Tr(dndgdy, ') = Tr(dg) = xo(9)-
O

If a class function is the character of some representation, we just call it a “character”.
Thus, the set of characters is a subset of the set of class functions.

We write L(G) = {f: G — C} for the set of all functions to complex numbers , and
L¢(G) C L(G) for the subset of class functionsﬂ Note that L(G) is a complex vector space,
and L°(G) is a subspace of L(G). We have that dim L(G) = |G|, and dim L¢(G) = the
number of conjugacy classes in G.

The vector spaces L(G) and L¢(G) are inner product spaces. Define a function L(G) x
L(G) — C, written “(f1, f2) — (f1, f2)”, by

(f1, f2) = |é,‘ > filg) falg)-

geqG

2Steinberg calls this set “Z(L(G))”.
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This has the properties

o (M1 fi+ Aafa, 9) = Mi(f1, 9) + Xalfa, g), for Ay, Ao € C, f1, fa,9 € L(G).

e (g9, f) = ([, g), for f,g € L(G).

o (f, f) €eRyoif f e L(G) and f # 0.
That is, it is an Hermitian inner product for L(G). (Note: (fi, f2) is C-linear in the
first variable, but is C-antilinear in the second variable, i.e., (f1, Af2) = A(f1, f2).)

As a consequence, it makes sense to speak of an orthonormal subset of L(G) or of
L¢(G): alist of elements f1,..., f, such that (f;, f;) = d;;. It is an immediate consequence
that any orthonormal subset is linearly independent.

An orthonormal basis is a basis which is an orthonormal subset. Given an orthonormal
basis f1,..., fn, we always have

f=Y_{f Fi) fi
k=1

16. ORTHOGONALITY RELATIONS FOR CHARACTERS
We are going to show the following, called the orthogonality relation for characters.

Theorem. Let ¢, be irreducible representations of G. Then

1 ife~,
(X¢> Xu) = 0 ifé ot

That is, the irreducible characters are an orthonormal subset of L(G).
I will prove this soon. First, let’s get lots of consequences.

Corollary. There are at most s equivalence classes of irreducible representations of G, where
s = the number of conjugacy classes in G.

Proof. If A, ..., A" are a list of pairwise inequivalent irreducible representations, then by
the orthogonality relation, the characters x,1,...,x)r are an orthonormal subset of L¢(G)

(and in particular are pairwise distinct, since the representations are pairwise inequivalent).

Thus r < dim L¢(G) = s. O

(Soon, we will show that irreducible characters are a basis of L°(G), and thus that there
are exactly s distinct irreducible characters.)

Proposition. Let ¢ be a representation of G, and suppose ¢ = ¢V @& - @ ¢ where each
&*) is irreducible. Then for any irreducible representation X,

(Xx, Xo) = number of k € {1,...,n} such that o*) ~ X.

As a consequence, any two decompositions of ¢ as a direct sum of irreducible representations
have the same number of irreducibles of each type.

Proof. Since Xy = > 14 ch), we have
n
<X(b’ X/\> = Z<X¢(k)’ X/\>a
k=1

where each term <X¢(k>7 X») is either 1 or 0 depending on whether A ~ #*). This gives the
first statement.

The second statement follows from the fact that the numbers (xx, x¢) do not depend on
the choice of direct sum decomposition. ]

Hermitian inner product

orthonormal subset

orthonormal basis
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For an irreducible representation A, the number (x», x¢) is called the multiplicity of A
in ¢.
Proposition. If ¢ is a representation, and X', ..., \° is a complete list of pairwise inequiv-
alent irreducible representations of G, then
¢~ maN D DM,
where my = (X¢, Xak), and “mA” is shorthand for “N@--- ® \”.

m copies
Proof. Since ¢ is completely reducible, there exists a decomposition
&~ mIA D mg\®

with my > 0. Then
S
(Xg» Xak) Zle/\l Xok) = mex,\i, Xok) = M

O

Corollary. If ¢ and 1) are representations, then x4 = xy iff @ ~ 1. That is, characters are
a complete isomorphism invariant of (finite dimensional) representations of (finite) groups.

Proof. Immeditate from the preceeding proposition. O
Corollary. If ¢ ~ miA @ --Dmshs, where \1,..., \s are pasrwise inequivalent irreducibles,
then

{Xo» Xo) ka

In particular, ¢ is irreducible iff (x4, xg) = 1.
Proof. Compute

X(]ﬁa X¢ Zle}\“ Zm]X)\ >
= Z Z mim; (X, XA;)

i=1 j=1
T
= mi,
k=1
using the orthogonality relation for characters. This = 1 iff mj = 1 for exactly one value of

k, and all other m; = 0. O]

Warning. it is not true that f € L(G) is such that (f, f) = 1, then f is the character of
some irreducible representation. You need to know that f is a character in order to conclude
this.

17. CHARACTER TABLES FOR Z4 AND Zo X Zo

Write a for a generator of Z4. The following table presents all the irreducible characters
of Z4.

multiplicity
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e a® a
x1 |1 1 1 1
x2 | 1 T —1 —1
xs3 |1l —1 1 -1

X4 1 — -1 —
All these characters are homomorphisms Z4 — C*, which are all the irreducible representa-

tions since G is abelian.
You can check explicitly that the orthogonality relations (x;, x;) = di; hold. Using

(i X3} = 3 DG + xa(a)a(@) + (@6 + e @),

we get for instance

(x2, x2) = 7 [(1)(1) + (@) (=) + (=1)(=1) + (=) (&) =1

| =

and
(X2, x4) = i[(l)(l) + (1) (@) + (=1)(=1) + (=i)(=i)] = 0.

Here is the character table for Zy X Zs, in terms of order 2 generators a and b.

‘ e a b ab
x1 |1 1 1 1
x2 | 1 1 -1 -1
x3 |1 -1 1 -1
xe|1 —1 -1 1

18. CHARACTER TABLE FOR S3

Here are some characters.

e There is a trivial representation S3 — C*, which is also a irreducible character,
which we write as x1, so x1(g) = 1 for all g.

e The sign homomorphism S3 — C* sends even permutations to 1 and odd permu-
tations to —1. This is a representation, and also a irreducible character, which we
write as xa2.

e We have the standard representation p: S3 — GL3(C). It is easy to compute its
character on representatives of conjugacy classes:

Xple) =3,  xo((12))=1,  x,((123))=0.
We have

(Xp» Xp) = ;3 > Xo(9)x(9)

geSs
— é[1(3.3)+3(1 1) +2(0-0)]
=2.

Thus, p is not an irreducible representation. The only way to write 2 as a sum
of positive squares is 2 = 12 + 12, so p ~ A @ X for two inequivalent irreducible
representations A, \'.

We can compute

[1(1-3)+3(1-1)+2(1-0)] =1

[N

<X1, Xp> =
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and 1
<mﬁm>:6pu-$+3@4.n+2a-m]:0
So p ~ x1 ® ¥ for some other irreducible 2.
e Since x, = X1 + Xy, we must have
Xple) =2, xp((12)=0,  xu((123))=-

We obtain the “character table” of S3, with x3 = xy:

6 1 3 2

e (12) (123)
i1 1 1
Yo |1 1 1
X3 2 0 —1

I’ve written the sizes of the conjugacy classes above each representative, since these numbers
are needed to compute the inner product of characters.

Note: we know that since the sign representation is 1-dimensional, if x is an irreducible
character so is x2x. Since x2x3 is an irreducible character of dimension 2, and since we have
accounted for all irreducible characters, we must have y2x3 = x3. This gives another proof
that x3((12)) =0, since x2((1 2)) = —1.

Finally, note that ¢ must be equivalent to the representation on the 2-dimensional invariant
subspace of p that we described earlier. That earlier calculation thus gives yet another way
to compute x3.

19. PROOF OF THE ORTHOGONALITY RELATIONS, PART 1

Let ¢: G — GL(V) be an irreducible representation, and let xy = x4 be its character. I
want to show (x, x) = 1.

WLOG we can assume ¢ is a matrix representation, so we can write ¢4 = (¢;5(9)) €
GL,(C). Remember that @ = x(g~ 1), and compute:

X X) KHEZX

geG
- i S et
9€G i,j
The second sum is over the indices i =1,...,n and 7 = 1,...,n. The idea is to switch the

order of summation, and find a formula for (1/[G|) >_,cq ¢ii(9)j;(g7t) for a fixed i and j.
We will use the “averaging trick” combined with Schur’s lemma.

Lemma. Let ¢: G — GL(V) be an irreducible representation of dimension n, and let
T:V —V be a linear map. Define T': V -V by

geG
Then T" = AT where A = (1/n) Tr(T).

Proof. This is the “averaging” trick, so 77 € Homg (¢, ¢). Since ¢ irreducible, Schur’s lemma
says T = M for some A € C. To compute \ take the trace:

(1" |G‘ZTr¢gT¢g>— x(T),

geG
so Tr(T) = Tr(T') = Tr(\) = nA gives the claim. O
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Assume now that ¢: G — GL,(C) is a matrix representation. We represent an arbitrary
T € Hom(C",C"™) by an arbitrary matrix X = (z;;) € Matyx,(C).
Let X' = (77;) € Matyx,(C) be the matrix representing 7", so

Z by X g1

gGG

By the lemma X’ = AI with A = (1/n) Tr X.
I'm going to write the matrix entries of X’ in two different ways. I'll use the Kronecker
delta, defined by I = (52-]-). The averaging formula becomes:

o o E E ol

geG u,v
where 1 < wu,v < n. Since X’ = (1/n) Tr(X)I, we can also write

1 1
:E;,J = E(SU Z Tgk = ﬁ Z 5ijxuv6uv-
k u,v
Putting this in one equation gives

1
0= Z |:n5ij5uv - |G| Z Qszu d)v] ):| Tyv-

u,v QGG
Remember that the matrix X is arbitrary. So if we set x,, = 1 and all other entries of X to
0, we get a Schur orthogonality relation: Schur orthogonality rela-
tion
1 -1 .
ﬁéijéw = \G| gEZquw 9 dwi(9™) for all 1 <4, j,u,v <n.

In particular, taking U =1 and v =j gives

5 1] |G‘ gzé;:(bm d)jj ) for all 1 < Z,] <n.

Summing over all ¢ and j gives

Z Zasm )$5i(97")

gGG
/L?]

This is what we wanted.

20. PROOF OF THE ORTHOGONALITY RELATIONS, PART 2

Let ¢: G — GL(V) and ¢: G — GL(W) be irreducible representations which are not
equivalent. I want to show (xy, X4) = 0. The proof will be almost the same as before.
WLOG we can assume ¢ and v are matrix representation, so we can write ¢, = (¢i;(g)) €

GL,(C) and ¢y = (¢ij(g)) € GL,(C). Remember that x4(g9) = xs(97!), and compute:

—1
(X Xo) = |G‘wa )xs(97")
geG

= 1@ ZZ% )oiilg™).

9€G i,j
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Again, we will switch the order of summation, and find a formula for (1/[G) >_ ¢ ¥ii(9)d;; (g7
for a fixed ¢ and j.
We will use the “averaging trick” combined with Schur’s lemma.

Lemma. Let ¢: G — GL(V') be an irreducible representation, and let T: V — V be a linear
map. DefineT': V =V by
Z 0Ty "

geG
Then T" = 0.
Proof. This is the “averaging” trick, so 7" € Homg (v, ¢), and thus 77 = 0 by Schur’s lemma
since ¢ and v are irreducible and not equivalent. O

Assume now that ¢: G — GL,(C) and ¢: G — GL;,(C) are matrix representations. We
represent an arbitrary 7" € Hom(C",C™) by an arbitrary matrix X = (x;;) € Maty,x,(C).
Let X' = (7};) € Maty,xn(C) be the matrix representing 7", so

|G| Z Tr[}ngbg

geG

By the lemma X' = 0.
The matrix entries of X’ are

vy = i 20 2 vinl9)rans(e™)
geG uv
where 1 <u <m and 1 < v <n. Since X’ =0, we get

z[ 5 bin0)ons (a7

geG’
Since X is arbitrary, we can set z,, = 1 and all other entries of X to 0, and get another

Schur Orthogonality relation: Schur orthogonality rela-
tion
|G|Zd}w 9)dwjlg -1 foralll <is,u<m, 1<v,j<n.
geG

In particular, taking u =7 and v = j gives

o_|G’Z¢“ 9)ii(gh)  foralll1<i<m, 1<j<n.
geG

Summing over all ¢ and j gives

<XTZ’7 X¢ Z Z % ¢jj ) =0.

i,J gEG
This is what we wanted.

21. THE REGULAR REPRESENTATION

Any group action G — Sym(X) on a finite set X can be upgraded to a representation,
which I will call a permutation representation. To do this, let V' be a vector space with permutation representation
a basis B which is in bijective correspondence in X. I'll write u, € B for the basis element
corresponding to x € X. I'm going to write CX for this vector space, which has dimension
d=|X|.
Now let
p: G — GL(CX)
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be defined by
pg(Uz) = Ugg.

This is a representation of G of dimension d = | X|. There is an easy formula for its character.

Proposition. If x is the character of the permutation representation associated to the action
by G on X, then

x(g) = |Fix(g)], where Fix(g) ={z e X | gz =x }.
In particular, the characters of permutation representations are non-negative integer valued.

Proof. List the elements of X as x1,..., 24, and write u; for ug,. Let A = [¢4|p, the matrix
of ¢4 with respect to the basis B. Then A is a permutation matrix. The (4,7) entry is either
0 (if gx; # x;), or is 1 (if gx; = x;). O

Ezample (The standard representation of S,,). The standard representation p: S, = GL4(C)
is an example of a permutation representation. Its character is given as follows: if g € 5,
has cycle type 1"12"2 ... n™ (i.e., a product of 71 1-cycles, ro 2-cycles, etc., pairwise disjoint,
with ri +--- 4+, = d), then x,(g) = r1.

The regular representation of GG is the one associated to the “left regular action” by G
on X = @G, defined by = — gz. It has dimension n = |G|. Explicitly, it is a homomorphism
L: G — GL(CG) given by

Ly(up) := ugh.

XEA) = 0 if g#e.

It turns out that every irreducible representation of G is a subrepresentation of the regular
representation. In fact, we have the following.

Its character is given by

Theorem. Let L be the reqular representation of G, and let A1, ..., As be a complete list of
pairwise inequivalent irreducible representations of G, and write dp, = dim A\, > 0. Then

L~did @ Ddg)s.

Furthermore,
|G| =d3 + -+ d2.

Proof. Let x1 = x»,- Compute:

1 _
(e Xa) = 157 > xu(9)xr(9) = xr(e) = dp.

geG

So by the orthogonality relation, dy = the multiplicity of Ay in p. Since irreducible
representations have positive dimension, di > 0, there is at least one copy of Ag in p.

Finally, we can evaluate x, at e:

Gl =xp(e) =Y dixile) = > di.
k k

regular representation
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22. THE NUMBER OF IRREDUCIBLE REPRESENTATIONS

We have already shown that the number of irreducible representations (up to equivalence),
is bounded above by the number of conjugacy classes in G. We will now show these numbers
are equal.

Lemma. Let ¢: G — GL(V) be a representation, and let f € L°(G) be a class function.
Define a function Ty: V —V by
T = 1o 0

geG
Then Ty € Homg(o, ¢).
Proof. For a € G we have
1 .
(Zﬁan(ba*l = 1A Z f( )(Zsaga*1
|G\ >
Z f(a=tha)p where h = aga™!,
|G‘ hed
f ¢h - T ’
“lal hZG !
since f is a class function so f(a='ha) = f(h). O

We get a different operator for each representation ¢, so I might write T}b instead of just
Ty to emphasize this.

Corollary. Let ¢ be an irreducible representation of dimension d and character x. Then

Ty =Y F@og =ML A= (x f)

geG

Proof. By Schur’s lemma, 7" = X for some A. To compute A\ we compute the trace of T':

Ty) ‘G, > Fox() = (x ).

geG
Since Tr(Al) = Ad, this gives the claim. O
Theorem. Let A\1,...,\s be a complete set of pairwise inequivalent irreducible rerpresenta-
tions of G, and write X = X, for the character of \i,. Then x1,...,Xxs are an orthonormal

basis of L°(G), and thus s = the number of conjugacy classes in G.

Proof. We already know that (x;, x;) = d;j, so it suffices to show that if f € L(G) is such
that (xx, f) =0 for all k, then f =0.

Let ¢: G — GL(V) be any representation. By complete reducibility, it has the form
é =W @ @ ¢@ for some irreducible subrepresetations ¢F): G — GL(Vy), where
Vi < V is a subspace. Consider the operator T ]‘f € Homg(¢, ¢) as defined above by

= (1/1G]) 22, f(g)dg. Note that this formula implies that Ty(Vj) C Vi, and thus that
T‘Z> restricts to a morphism T¢|Vi. € Homg(¢®), ¢, and from its formula we see that in
fact T¢|Vj = . By the above Corollary and the hypothesis that f is orthogonal to all

irreducible Characters we must have T¢|Vj, = 0 for all k, and therefore that Ty = 0. Thus,
we have proved that the operator T;f5 € Homg (¢, ¢) is the zero map for every representation

o.
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Let L be the regular representation, and evaluate T' fL at the element u., € CG:

1%m=éé;@%

Since the u, are a basis of the regular representation, TfL =0 implies f(g) =0 for all g € G.

Thus f = 0 as desired.
O

23. CHARACTER TABLE FOR Dy

Let D4 be the dihedral group of order 8, generated by elements 7, j with r* = e = j2 and

rj = jr—L.

8 1 2 1 2 2

e roor? j gr
x1 |1 1 1 1 1
x2 | 1 1 1 -1 -1
x3 |1 —1 1 1 -1
x4 |1 —1 1 -1 1
X5 | 2 0 -2 0 0

The first four characters are homomorphisms G — C*. If G = Dy, then [G, G| = {e,r?}, so
G/|G, @] is a Klein 4-group.

We can deduce the fifth character using the orthogonality relations and the fact that its
dimension y5(e) must be 2, since 8 = 12 + 12 + 12 4+ 12 + 22. (For instance, we must have
{x1+ X2+ X3+ X4, x5) = 0, from which you can read off that x5(r?) = —x5(e). Then the
fact that (x5, x5) = 1 already implies that ys vanishes on G'\ {e,7?}. Alternately, we can
use the fact that we must have xxx5 = x5 for k = 2,3,4 to deduce this.)

The character x5 is that of the “obvious” real representation ¢: G — G Lo(R), defined by

=7 o ew=]y O]

Since GLa(R) < GLo(C), this also gives a complex representation.

24. SECOND ORTHOGONALITY RELATIONS

Let Aq,..., As be a complete list of inequivalent irreducibles, with characters x1,..., Xs
and let g1,...,gs be a list of representatives of conjugacy classes in G. Then we can form
the character table of G, which is really an s X s complex matrix:

g g
X1 | xi(g1) - xai(gs)
Xs | Xs(g1) - Xxs(9s)

Recall that a matrix U € Maty,,x,(C) is unitary if its rows are an orthonormal basis of C"
(using the usual Hermitian inner product on C"). This is equivalent to saying UU* = I,

where U* = UT, which is equivalent to U*U = I, which is equivalent to saying the columns
are an orthornormal basis of C™. The character table is almost a unitary matrix. We write
Cl(g) := { hgh~! | h € G} for the conjugacy class of g, and Cent(g) :=={h € G | hgh™' =g}
for the centralizer subgroup of g.

Lemma. The matriz U = (u;j) € Matys(C) defined by
wij = xi(95)/v/&, ¢ = [Cent(g;)| = G| /[Cl(g)]

unitary
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18 a unitary matrix.

Proof. The inner product of the ith and jth rows of U is

Zuzkujk - Z i)

|Cl(gr)| —
(k)X (9k)
Z |G| J
L3S
k=1 gECl gk)
=@ Z xi(9)xi(9) = (i X5) = 645
geG
O
Theorem (Second orthogonality relations). Let x1,...,xs be a complete list of pairwise

distinct irreducible characters. For any g € G we have

ZXk 9)xx(g) = [Cent(g)| = |G|/ |CL{g)],

and for any g,h € G whzch are not conjugate to each other, we have

> xi(9)xk(h) = 0.
k=1

In particular, columns of the character table are pairwise orthogonal.

Proof. This is just the fact that the columns of U are also an orthonormal basis, so
2 k=1 Ukillkj = i O
Ezample (Character table for Sy). It looks like this.

24 1 6 3 6 8

e (12) (12)(34) (1234) (123)
xi| 1 1 1 1 1
Yo | 1 -1 1 -1 1
X3 | 2 0 2 0 ~1
X4 | 3 1 ~1 -1 0
s |3 -1 ~1 1 0

24 4 8 4 3

I have put the numbers |Cent(g)| = |G|/ |Cl(g)| along the bottom row, to make it easier to
verify the second orthogonality relations.

FEzxercise. Prove this character table.

Ezercise. There is a 3-dimenional real representation of Sy, coming from the fact that Sy is
isomorphic to the subgroup G < SO(3) < GL3(R) < GL3(C) of rotational symmetries of
the cube. Determine the character of this representation, and identify its decomposition as
a direct sum of irreducible complex representations.



NOTES ON FINITE GROUP REPRESENTATIONS 22

25. FROBENIUS DIVISIBILITY, PART 1

Here is one more fact about the dimensions of irreducible representations, whose proof is
a bit more subtle than what we have seen so far.

Theorem (Frobenius). Let ¢ be an irreducible representation of G. Then d = dim ¢ divides
n=|G|.

Consider any representation ¢: G — GL(V'). For any x € G, define the linear operator
T, = Z Og-
g€Cl(z)

Note that this only depends on the conjugacy class of x. We have ¢,T,¢,-1 = T, for any
a € G, so T, € Homg(¢, ¢).

Now suppose ¢ is irreducible, so Schur’s lemma says that T, = A\,I for some A, € C. We
can actually compute A, by taking traces:
Cl(x
s, = l0lo)
where x is the character of ¢. Note that A, = 1.

Consider the linear map > x(g™ o, = Do, x(z; 1) Ty, where in the second formula
we sum over a list x1, ..., x5 of representatives of the distinct conjugacy classes in G. By
taking the trace of this, and using the orthogonality relation (x, x) = 1, we get an identity

% = ZX("E;l))‘xi'

Let R = the abelian subgroup of C generated under addition by the finite set of elements
P, 0<k<n, zecG,

where ( = ¢ . Since each x(g) is a sum of n-th roots of unity, we have from the above
identity that n/d € R.
The theorem is an immediate consequence of the following.

x(z)

2mi/n

Proposition. RNQ = Z.

Proof of Frobenius divisibility. We have shown that the rational number n/d is in R, and
therefore by the proposition is an integer. ([l

We will prove this proposition in the next section.

Ezample (Character table of S5). Here it is.

120 1 10 15 20 30 24 20
e (12) (12)(34) (123) (1234) (12345) (123)(45)

x1| 1 1 1 1 1 1 1
2| 1 -1 1 1 ~1 1 ~1
xs| 4 2 0 1 0 ~1 ~1
xa| 4 =2 0 1 0 ~1 1
xs| 5 -1 1 ~1 1 0 ~1
X6 | 5 1 1 ~1 ~1 0 1
x| 6 0 —2 0 0 1 0
120 12 8 6 4 5 6

The abelian characters are x; and xo, where y2 is the sign representation. The sum
X1+ X3 = Xp, where p is the standard 5-dimensional representation, can be computed
explicitly.
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FEzercise. Explain how to prove the rest of the character table.

(It is possible to do this just using general facts about characters of irreducible represen-
tations that we have proved, including Frobenius divisibility, applied to G = S5, together
with the existence of the standard representation.)

(In addition, you could introduce some new representations whose characters you can
compute. For instance, for every subgroup H < S5 there is a permutation representation
C(S5/H). These won’t usually be irreducible, but they can contain new irreducible repre-
sentations. For instance H = N(((1 234 5))), which gives a 6 dimensional rerpresentation,
or H=N({(123))) or H= N({(12))), which give 10 dimensional representations.)

26. FROBENIUS DIVISIBILITY, PART 2

Recall that for an irreducible representation ¢, we defined R < C to be the subgroup
generated by the set of numbers of the form (k)\g, 0<k<mnandge G, where ( = e2™/"
and A, is defined by

Ty= > ¢ua=Al.
z€Cl(g)
Our goal is to show RNQ = Z.

Lemma. R is a subring of C, and 1 € R.

Proof. By definition (R, +) is a subgroup of (C, +). We have that A, = 1 € R. To show that
R is a subring, it suffices to show that ¢(*A;(?Ap, € Rfor all 0 <4,57 <n and g,h € G. Since
("™ =1, we have ¢*¢7 = (¥ for some 0 < k < n. So it suffices to prove a formula of the form

AgAn =D M Aa,

where the m,, € Z.
Since Ty = A\g1, it suffices to prove that

TyTh =Y my,Te,,
T
for some m; € Z. We have that
= > D Gw=) matu
ueCl(g) veCl(h) z€G

where m; is the size of the set M, := { (u,v) € Cl(g) x Cl(h) | uv =z }. For any y € G,
(u,v) = (yuy~ !, yvy ') defines a bijection My — M, ~1. Thus m, = m, whenever 2 and

2’ are conjugate, so
TgTh = Z m:c¢:v = ZmuTzz
;i

zeG
]

Recall that the underlying abelian group (R, +) of R is finitely generated, by definition.
Thus the claim that RN Q = Z follows from the following statement.

Lemma. Let R be a subring of C containing 1, such that the underlying abelian group of R
is finitely generated. Then RN Q = Z.

Proof. Since 1 € R it is clear that Z C RN Q.

Note that (R, +), in addition to being finitely generated, is torsion free, since nr # 0 when
n € Z~ {0} and r € C \ {0}, since C is a field of characteristic 0. So by the classification of
finitely generated abelian groups, (R, +) is isomorphic to Z™ for some m > 1. So we can
choose a Z-basis B = {e1,...,en} for R.
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Because R is a ring, for any a € R we get a function F': R — R defined by F(r) := ar,
which is a homomorphism of abelian groups. In terms of the basis B, we will have formulas

m
) = E Cij€i, Cij € 7.
=1

That is, F' is represented in terms of the basis B by some matrix C' € Mat,, xm(Z).
Now let @« = a/b € RNQ, where a,b € Z, b # 0. Then

aej = baej = bF(ej) = bZCijej = Z(bcijei).
i i
Since B is a Z-basis, it is Z-linearly independent, so we can match coefficients of the e;s on
both sides of the equation. In particular, equality of the coefficients of e; gives

a
a = be;j, SO azzzcijGZ

as desired. m

27. INDUCED CHARACTERS
Let G be a group and H a subgroup, with m = [G : H]. Then we have a function
Res%: L¢(G) — LE(H)
which sends class functions on G to class functions on H, by restriction to the subgroup:
(Res% f)(h) := f(h),  heH.

We call Res$ the restriction function. restriction

Proposition. If x is the character of a representation of G, then x' = Resgx 1s the
character of a representation of H.

Proof. Let ¢: G — GL(V) be a reprentation with x = xg4. Let ¢»: H — GL(V) the
restriction of this map to the subgroup H. Then clearly the character of 1 is x'. O

If xy = Res%} X, We say that v is the restricted representation of ¢. restricted representation
It turns out there is a way to turn class functions on a subgroup intto class functions
on the whole group. Given H < G and f € L°(H), we define f' = Ind$ f € L¢(G) by the

formula
|H| Z f(zgx 1 .

zeG
zgr—leH

f/

This is a class function on G, since if ¢’ = tgt~! for some t € G, then

_ 1
flltgt™) = 0 > fat)g(at) ,H| S fwgy™,  y=at.
zeG yeG
(zt)g(at)~teH ygy~teH

Thus this construction defines a linear map
Ind%: L¢(H) — LY(Q),

and is called the induction function. induction
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Remark. Since f is a class function on H, if we replace x by zh, we get the same value in:
f(zgx™) = f(hxgx=th~!). It is thus often convenient to write the formula for induction as
follows. Choose a set R = {x;}1<i<m of representatives of right H-cosets in G (so Hx = Hux;
for exactly one x; € R). Then the induced class function f’ = Ind% f is given by

Foy= 3 Flaiga)
T, €ER
zigzi_IEH

Exercise. Show that H is a normal subgroup of G iff for all f € L°(H) the induced class
function f/ = Ind$ f € L¢(G) vanishes on G . H.

Ezercise. Let G be any finite group, and H = {e} < G the trivial subgroup. Compute
X = Ind% X, where x is the trivial character on H. What representation of G does x’
correspond to?

Induction is “adjoint” to restriction, in the sense of linear algebra.
Proposition (Frobenius reciprocity). For any f € L°(H) and f" € L°(G), we have
<Indg fa f/>G = <fa Res?] f,>H

(I've put a subscript on the inner products to indicate that they are happening in different
vector spaces, namely L°(G) and L°(H).)

Proof. Compute:

(Indf f, /e |G\| Z > fagr ) f(9)

gGG zeG
xgr~leH

|G\ |H| Z Z fh) f'(x 1hx) reindex sum by h = zgz ™,
heH xeG

IGH §:§:f f" e (@),

hEH zeCG

|Zf )f'(h) = (f, Res f")

heH

It turns out that induction also sends characters to characters.

Proposition. If x is the character of a representation of H, then ' = Indgx s the
character of a representation of G.

If xy = Indg X4, We say that v is the induced representation of ¢. Note that by the
formula for induction, x’(e) = [G : H]|x(e) and thus dim ¢ = [G : H| dim ¢.
We will prove the existence of induced representations soon.

Ezxample. Let 1 be the irreducible 2-dimensional representation of S3, with character

x(e)=2,  x(12)=0, x((123)=-

We can regard S3 as a subgroup of Sy (i.e., as the subgroup of permutations of {1,2,3,4}

Ind3

which fix 4), and so we can form x' = In 53 X- We can compute this:

X'(e)=8  X((12)=0, X (12)@B4)=0, x((1234)=0, x(123)=-

induced representation
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Note that (1 2)(3 4) and (1 2 3 4) are not conjugate in Sy to any elements of Sz, and (1 2) is
only conjugate to 2-cycles, on which x gives 0. For the remaining cases,

L N
X(e)=¢ erG x(wer ™) = “=x(e) =8,
zex—1eSs
and
Y((123)) = é Y x@(123)) = é S x(@(123)77Y) = x(123) = —1.
zeG T€S3

z(123)z~1eS;s
So there is is an 8-dimensional representation ¢ of S4 with this character. It is not irreducible:
(x’, xX')s, = 3. Since the only way to write this as a sum of squares is 3 = 12 4 12 + 12, this
will be the sum of three distinct irreducible Sy-representations. (Ezercise: determine these
irreducibles, by referring to the character table for Sy given earlier.)

FEzercise. Let H < G. Show that if x € L¢(H) is the trivial character (x(h) = 1forall h € H),
then x/ = Ind% is the character of the permutation representation p: G — GL(C(G/H)) of
the left-coset action by G on G/H.

28. CHARACTER TABLE FOR Dj

Let’s start with a character table for Zs, which we think of as the cyclic subgroup (r) < Ds.
e r 2 3 gyt
x1|]1 1 1 1 1
x2|1 ¢ ¢ ¢ ¢t
xs|1 ¢ ¢t ¢ ¢
xa|l ¢ ¢ ¢ ¢
xs |1 ¢t ¢ ¢ ¢

where ¢ = e27/5,
We can induce these characters from (r) to Ds, the dihedral group of order 10.

10 1 2 2 5

e r r2 j

Indx; |2 2 2 0
Indx2 |2 a S 0
Indyxs |2 B8 o O
Indyx4 |2 B8 o O
Indxs5 |2 a S 0

where o = ¢ + (7! = 2cos2r/5 and 8 = (2 + (72 = 2cos 47 /5. Note that
a4+ ="+ =(C+2+ )+ +24+0)=3+1+(+ P+ +¢H) =3,
from which we see that (Ind xx, Indxx) = 1 for £ = 2,3,4,5. However, Ind x; is not

irreducible, since (Ind x1, Ind x1) = 2.
Using this, we can fill in the whole character table for Ds.

0|1 2 2 5

e r r*
i1 1 1 1
b1 1 1 -1
X512 a B 0
Xil2 B a 0

0 5 5 2
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29. CONSTRUCTION OF INDUCED REPRESENTATIONS

Let H < G. Given a representation ¢: H — GL(V) with character x, we want to

construct a representation ¢: G — GL(W) with character ' = Ind% x.
Let
W:={w: G =V ]|whz)=¢p(w(x)) forall x € G, h € H },
the set of all “H-equivariant functions” from the set GG to the vector space V. The set W is
a vector subspace of the set of all functions G — V.

Let R = {x;} C G be a set of representatives of the right H-cosets in G (so Hx = Hux;
for exactly one x; € R). We see that a function w € W is exactly determined by its values
w(z;) for z; € R. In fact, this shows that dimW =[G : H|dim V.

Define ¢: G — GL(W) by

Yg(w)(z) := w(zg), gelG, weW, zedG.
Lemma. v is a representation of G.

Proof. The key part is to show that it is well-defined: that w € W implies W’ = 94(w) € W.
This is straightforward: if h € H, then
w'(h) = w(hzg) = dn(w(zg)) = dn(w'(2)).
Then we can show that that ¢ is a homomorphism, since 14, (¢g, (w))(x) = Vg, (W) (zg1) =
w(zg192) = Vg9, (W) (). O
Now we need to compute the character of 1. For a right H-coset Hx C G, let
Wie ={weW |w(y) =0ify ¢ Hx },
the subspace of functions in W which are “supported” on the coset Hzx.

Lemma. The vector space W is a direct sum of the collection of subspaces W, where
x, € R, t.e., W =Wgy, & & Wpy,,, where m =[G : H]|.

Proof. We need to show that the map m: Wy, @ - & Wiy, — W sending (w1, ... ,wm) —
> ; wi is an isomorphism of vector spaces.
Given w € W and z; € R, let

w(g) if g€ Hxy,
wi(g) = .
0 if g ¢ Ha;.
This w; satisfies w;(ha) = ¢p(wi(g)) for all g € G and h € H, since g € Hx; iff hg € Hx;.
Therefore w; € Wy, by construction. Since w = ), w;, the map = is surjective.

If B; € Why, are such that 5 := )", 8; = 0, then for any g € Hz; we have ;(g) = (g9) =0,
whence § = 0. Thus 7 is injective. O

Lemma. We have that ¢g(Wrs) C Wyg,—1. In particular, g(Wee) € Wy iff xga™" € H.

Proof. Suppose w € Wg, and let w’ = ¢,(w). Then for y ¢ Hzg™! we have w'(y) =
w(yg) =0, since yg ¢ Hz. O

Thus, in terms of the direct sum decomposition W = Wy, @& --- ® Wg,,,, the operator
Yy has a “block matrix” decomposition (1;;(g)) where 1;(g) € Hom(Wxy,;, Wiy, ), with
the property that in each row and column only one “entry” 1);;(g) is non-zero. To compute
the trace, we only need to worry about the “diagonal” entries v;;, and thus

Tr(g) = Y Tr(vu(9) = Y. Tr(vylwy,,),

T, €ER T, €ER
xigxfleH
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since 1;;(g) is non-zero only if x;gz; leH.
For any € G we can define a linear map
E.: Wy — 'V, E,w = w(x)
by evaluation at x.
Lemma. The map E.: Wy, — V is an isomorphism of vector spaces.

Proof. The inverse function is defined by

(0)(y) = {gf)h(v) if y = ha for some h € H,

g1
0 ify¢ Hx.

x

Lemma. If g,z € G are such that xgz~' € H, then (Y4lw,,) = E;1¢xg$_1Ez.

Proof. Let w € Wy,. Then

Ex(d}g(w)) = ¢g(w)(:€) = w(azg), d)a:gx—l(E:c(w)) = ¢xgx—1(w(x)) = w(mga:_la:) = w(a:g).
O

Remark. The same argument shows more generally that, when ygz~! € H, so that 1)(Wg,) C
Wy, we have

wg’Hx = Ey_l¢ygx*1E1‘-
This gives a formula for all the non-zero “blocks” of 1,.

As a consequence, we get that

Tr(yg) = D T, ),

T, €R
migmi_leH

and therefore x, = Ind% X¢ as desired.

30. REPRESENTATIONS OF PRODUCTS OF GROUPS

Let G1 and G2 be groups, and let H = G1 X G5 be their product.
Given class functions fi € L°(G1) and fo € L(G2), we can produce a new class function
f1® fa € L¢(H) on the product, by the formula

(f1® f2)(g1, 92) = f1(g1) f2(g2)-

The new class function fi; ® fs is called the product of the characters. It is often just
written as “f1 fo”.
We have a formula for inner products of product characters.

Proposition. If fi1, f{ € L°(G1) and fa, f5 € L°(G2), then
<f1 ®f27 f{ ®fé>H - <f17 f{>G1<f2) fé>G2'

product
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Proof. This is a straightforward calculation:

(fi® fo, fi® f3)H |H| D (h® f)h) (fi® f5)(h)

heH
|G1||G | > Filgr) falg2) Fi(91) f5(g2)
Pt
<| Z fi(g1) fi 91)<| Z folg2) f 92)>
gleG g2€G2

= <f1a f1>G1<f2a fé>G2

The tensor product of characters is also a character.

Proposition. If x is the character of a representation of G1, and X' is the character of a
representation of Go, then x ® X' is the character of a representation of H = G1 ® Gbs.

If x, = X4 ® Xy, we say that p is the tensor product representation of ¢ and v. Note
that by the formula, dim p = (dim ¢)(dimv)).

I’ll prove the existence of tensor product representations soon. First let’s get the big
consequence: if a group is a product, its representations are determined by the representations
of its factors.

Corollary. Let H = G1 xGo. Let x1,...,Xr be a complete set of pairwise distinct irreducible
characters of G1, and X}, ..., X} be a complete set of pairwise distinct irreducible characters
of Go. Then

{xi®x;l1<i<r, 1<j<s}
1s a complete set of pairwise distinct irreducible characters of H.

Proof. First, note that {x; ® x’;} is an orthornormal subset of L°(H):

(Xi @ X}, Xk @ Xo)H = (Xis Xi)G1 (Xg» X0)Ga
= 5ik:5j€-
In particular, each y; ® X;- is an irreducible character.
To see that it is a complete set, it suffices to show that rs = dim L°(H) = number of
conjugacy classes in H. If h = (g1, g2) € H, then its conjugates in H are the elements of the
form (a1,a2)(g1,92)(a1,a2)"t = (alglafl,agggagl), for a1 € Gy and as € G5. Thus

Clg(h) = {(z1,22) € H | 21 € Clg, (g1), 22 € Cla,(g2) } = Cla, (91) x Clay, (g2)-
Thus each conjugacy class C' in H corresponds to exactly one pair (C1,C3), where C is a

conjugacy class in Gy. U

Remark. If H = G x G, then we can identify G with the diagonal subgroup A of the
product, defined by A :={(g,9) | g € G }. By the above, if x1, x2 are characters on G, then

X = Res¥*(x1 @ x2)
is also a character on GG, with formula

x(9) = x1(9)x2(9)-

We have already seen a special case of this, when one of the original characters is 1-
dimensional.

tensor product representa-
tion

diagonal subgroup
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As a consequence, the subset X (G) C L¢(G) of characters has operations of addition and
multiplication (defined in the usual way for functions) which are associative and commutative.
Furthermore, multiplication distributes over addition, and these operations have identity
elements (the characters of the O-representation and the trivial representation respectively).
Thus X (G) has the structure of a commutative semi-ring. (It is not closed under additive commutative semi-ring
inverses, so it is not a commutative ring.)
Although the subset of characters is not a ring, you can enlarge it to get a ring. A virtual
character is any function which is a difference x4 — xy of two characters. You can show virtual character
that the subset R(G) C L¢(G) of class functions which are virtual characters is actually a
subring. It is called the representation ring of G. representation ring

Now let’s prove the proposition.

Construction of tensor product representations. Let ¢: G1 — GL(V') and ¢: Go — GL(W)
be representations. Choose bases v1,...,v, of V and wy,...,w, of W. Using these bases
we can rewrite these as matrix representations, so that

vj) = Z¢ij(w)via Yy(wj) = Zdh‘j(i@w
=1 =1

Let U be any vector space of dimension mn, and choose a basis { u;, | 1 <i<m, 1 <k <n}
of U. Define p: G1 x G2 = GL(U) by

Z Z ¢2j 1/)142 Uz,k‘

i=1 k=1
It is straightforward (but a little tedious), to show that this is a representation:

Play) (P ) (Uie) = Play) <Z Z b (2" ) e (y )ui,k>

i=1 k=1

— Z Gij (2" ) re(Y') () (Wi k)

i=1 k=1
- Z Z i () re(y Z Z Gsi(2)r(Y)us t
i=1 k=1 s=1 t=1
= Z Z <Z Gsi (@) iz (2 > <Z Yk (Y) Vre(y )Us,t
s=1 t=1
= Z Z ¢sj($$l)¢t6(yy,)us,t
s=1 t=1

= Plaa’ yy') (U.0)-
To compute the character of p, note that the coefficient of w; ¢ in p(, ) (wje) is @55 (7)Pec(y),
S0

j=1 (=1
_ (ﬁjj ) (; ey
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SO Xp = Xo¢ @ Xy- O

Ezample (Character table of Dg). Note that Dg is a product group of the subgroups
(r?,j) ~ S3 and (r3) ~ Z,.

6 13 2
(r24) e §
vi |1 1 1
Y2 |1 -1 1
xs |2 0 -1
6 2 3
Thus we get the following table for the product.
12 1 3 2 1 3 2
Dg e J r? r3 gr3 70
(02,5) x () | (e,e) (oe) (r%e) (e,r®) () (2r?)
X1 ® X, 1 1 1 1 1 1
X2 ® X, 1 -1 1 1 -1 1
X3 ® X] 2 0 —-1 2 0 —-1
X1 ® X 1 1 1 -1 -1 —1
X2 ® X 1 -1 1 -1 1 —1
X3 ® X5 2 0 —-1 -2 0 1
12 4 6 12 4 6
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